По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 **Архангельск** (8182)63-90-72 **Астрахань** (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 **Иркутск** (395)279-98-46

Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курган (3522)50-90-47 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 **Москва** (495)268-04-70 **Мурманск** (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Ноябрьск(3496)41-32-12

Омск (3812)21-46-40 **Орел** (4862)44-53-42 **Оренбург** (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саранск (8342)22-96-24 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17 **Тамбов** (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70 Казахстан +7(7172)727-132 Киргизия +996(312)96-26-47

https://prmpribor.nt-rt.ru'|| ppk@nt-rt.ru

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ НА ТЕПЛОВЫЧИСЛИТЕЛИ ТМК-Н3

СОДЕРЖАНИЕ

ЧАСТЬ І	3
ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ	3
1 НАЗНАЧЕНИЕ	3
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
З УСТРОЙСТВО И РАБОТА ВЫЧИСЛИТЕЛЯ	6
4 МАРКИРОВКА, ПЛОМБИРОВАНИЕ, УПАКОВКА	8
ЧАСТЬ II	9
ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	9
5 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ	9
6 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ	9
7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	16
8 МЕТОДИКА ПОВЕРКИ	17
9 РЕМОНТ ВЫЧИСЛИТЕЛЯ	23
10 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	23
11 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	23
ПРИЛОЖЕНИЕ А	25
приложение Б	27
ПРИЛОЖЕНИЕ В	36
ПРИЛОЖЕНИЕ Г	44
ПРИЛОЖЕНИЕ Д	49
ПРИЛОЖЕНИЕ Е	53
ПРИЛОЖЕНИЕ Ж	54
ПРИЛОЖЕНИЕ И	55
приложение к	56

Настоящее руководство по эксплуатации (РЭ), распространяется на тепловычиситель ТМК-НЗ (далее по тексту - вычислитель), изготавливаемый:

жит правила его монтажа, эксплуатации, технического обслуживания, транспортирования и хранения.

В РЭ приняты условные обозначения, представленные в таблице 1.

Таблица 1

Наименование	Условное
	обозначение
Тепловая энергия (количество теплоты), $\Gamma \not\!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Q
Тепловая мощность, $\Gamma \partial \mathscr{R} / \iota \ (\Gamma \kappa a \pi / \iota)$	W
Масса теплоносителя, т	G
Массовый расход теплоносителя, <i>m/ч</i>	g
Температура теплоносителя в трубопроводе, °С	$t_{1} t_4$
Температура теплоносителя в источнике холодной воды, ${}^{o}C$	t_x
Разность температур теплоносителя между трубопроводами, ${}^{o}C$	Δt
Удельная энтальпия в трубопроводе, <i>кДж/кг</i>	$h_{1} h_4$
Удельная энтальпия в источнике холодной воды, $\kappa \not\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	h_x
Цена (вес) импульса преобразователя расхода, <i>м³/имп</i>	Δu
Плотность воды, $\kappa z/m^3$	ρ
Число импульсов, поступивших от преобразователя расхода, <i>имп</i>	N
Время безаварийной работы, <i>часы-минуты</i>	$ au_p$
Давление теплоносителя в трубопроводе, кгс/см²	P
Объем теплоносителя, M^3	V
Нештатная ситуация в работе прибора	Err

ЧАСТЬ І

ОПИСАНИЕ И РАБОТА ИЗДЕЛИЯ

1 НАЗНАЧЕНИЕ

1.1 Вычислитель предназначен для работы в составе теплосчетчика при измерении и регистрации параметров теплоносителя и тепловой энергии в водяных системах теплосиабжения различной конфигурации. Вычислитель обеспечивает измерение параметров теплоносителя в каждом от одного до четырех измерительных каналов, состоящих из преобразователей расхода, счетчиков воды или расходомеров-счетчиков (далее по тексту преобразователей расхода), преобразователей давления и термопреобразователей, а также обеспечивает учет тепловой энергии по одному или двум независимым теплообменным контурам.

Область применения - узлы учета для водяных систем теплоснабжения в различных секторах народного и жилищно-коммунального хозяйства, а также автоматизированные системы сбора и контроля технологических параметров.

- 1.2 Вычислитель обеспечивает сохранение параметров в электронном архиве емкостью для среднечасовых параметров 45, для среднесуточных параметров -365 суток.
- 1.3 Вычислитель обеспечивает измерение и вывод на жидкокристаллический индикатор (далее по тексту ЖКИ), а также через пользовательские интерфейсы на внешнее устройство (см. ниже), текущих и архивных параметров, указанных в таблице 1.1.

Таблица 1.1

Наименование	Представление информации	
параметра	жки	Внешнее
	714471	устройство
Тепловая энергия ГДж (Гкал)		
• с нарастающим итогом:	+	+
• 3a чac	-	+
• за сутки	+	+
Тепловая мощность, текущее значение ГДж /ч (Гкал/ч)	+	+
Масса теплоносителя по трубопроводам, т		
• с нарастающим итогом	+	+
• 3a чac	-	+
• за сутки	+	+
Массовый расход по трубопроводам, т/ч	+	+
Температура теплоносителя в трубопроводах, ^о С		
• текущее значение	+	+
• среднечасовое значение	-	+
• за сутки	+	+
Разность температур теплоносителя в подающем и обрат-		
ном трубопроводах, °С	+	+
Давление*, кгс/см ²	+	+
Дата и текущее время (день-месяц-год; часы-минуты)	+	+
Время безаварийной работы (часы-минуты)	+	+
Код аварийной ситуации	+	+

Примечания

- 1 Знак «+» означает представление информации, а знак «-» отсутствие.
- 2 * Измеренные или договоренные значения в зависимости от исполнения вычислителя.
- 1.4 Передача архивных данных и текущего состояния вычислителя может производиться через:
- -бесконтактный интерфейс БИФ на переносное считывающее устройство УС-Н1*(более подробно см. «Переносное считывающее устройство УС-Н1» Руководство по эксплуатации);
- -бесконтактный интерфейс БИФ и адаптер БИФ* на персональный компьютер (далее по тексту ПК) (длина линии связи между адаптером БИФ и СОМ-портом ПК не более 10м):
- -сетевой интерфейс СИ и контроллер КЛС* (адаптер модема АМ*) на ПК при работе в составе информационной сети (более подробно см. «Контроллер локальной сети КЛС» Руководство по эксплуатации; «Адаптер модема АМ» Руководство по эксплуатации);
- -сетевой интерфейс СИ, контроллер КЛС (адаптер модема AM), модем, телефонную линию связи на ПК.
 - *-производство ЗАО НПО «Промприбор».
- 1.5 В вычислителе предусмотрен дополнительный канал измерений объема и расхода, который может использоваться в качестве счетчика по трубопроводу холодного водоснабжения.
- 1.6 Дополнительные характеристики (договорные давления по каналам, цена импульса по каждому каналу, типы термопреобразователей и преобразователей давления, работающих вместе с вычислителем, температура и давление в источнике холодной воды) оговариваются потребителем при заполнении карты заказа, приведенной в ПРИЛОЖЕНИИ И.

Пример записи вычислителя его заказе и в документации:

Тепловычислитель ТМК-H3-<u>X.X</u>+<u>CBX</u> ТУ 408843.027-29524304-04

1 – наличие дополнительного канала измерения объема

Тип преобразователей давления: 0- давление договорное 1-выходной ток преобразователя давления (0-5)мA

2- выходной ток преобразователя давления (4-20)мА

Тип HCX термопреобразователей сопротивления: $1-100\Pi/$ Pt $100; 2-500\Pi/$ Pt500

Номер модификации

Таблица 1.2

Модифи- кация	Исполнение	Каналов измерений массы	Каналов из- мерений тем- пературы	Тип НСХ термопреоб- разователей	Каналов измерений давления	Номера схем изме- рений
	TMK-H3-1.0	4	4	100∏, Pt100	нет	
	TMK-H3-1.1	4	4	100∏, Pt100	4 (0-5 мА)	
	TMK-H3-1.2	4	4	100∏, Pt100	4 (4-20 мА)	Приложе-
TMK-H3	TMK-H3-2.0	4	4	500∏, Pt500	нет	ние Б
	TMK-H3-2.1	4	4	500∏, Pt500	4(0-5 мА)	
	TMK-H3-2.2	4	4	500∏, Pt500	4(4-20 мА)	

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Диапазоны измерения тепловых параметров вычислителя, а также их метрологические характеристики приведены в таблице 2.1.

Таблица 2.1

Наименование параметров	Диапазоны	Пределы допускаемой
Тепловая энергия (ГДж; Гкал),*	измерения 0,09999999,9 0,00999999,99 0,000 99999,999	погрешности ±3% при 10°C >∆t≥3°C ±1% при 147°C ≥∆t ≥10°C
Масса (т), объем (м³) *	0,09999999,9 0,00999999,99 0,00099999,999	<u>+</u> 0,3 (0,1)%
Температура теплоносителя, ^о С	3150,0	<u>+</u> 0,25
Разность температур теплоносителя, °C	3147,0	<u>+</u> 0,1
Избыточное давление, (кгс/см²),	016,0	<u>+</u> 0,3%
Время безаварийной работы, часы-минуты,	00000-0099999-59	±0,001%

^{*-} Диапазоны измерений определяются в зависимости от Ду преобразователя расхода и цены его выходного импульса (См. табл. Г.1, ПРИЛОЖЕНИЕ Г).

Примечания

- 1 Δt разность температур между трубопроводами одного теплообменного контура.
- 2 При измерении температуры, разности температур погрешность абсолютная, при измерении давления погрешность приведенная, при измерении остальных параметров погрешность относительная.
 - 2.2 Условия эксплуатации вычислителя:
 - температура окружающего воздуха, °С...... от +5 до + 50
 - относительная влажность воздуха при температуре 35°C, %...... до 95
 - напряженность переменного (50 Гц) внешнего магнитного поля,
 - не более,А/м.......400
 - механические вибрации частотой (10-50)Гц с амплитудой, не более, мм.......0,15
 - 2.3 Степень защиты вычислителя ІР65 по ГОСТ 14254.
- 2.4 По устойчивости к механическим воздействиям вычислитель относится к виброустойчивому и вибропрочному исполнению группы N1 по ГОСТ 12997.
- 2.5 Питание вычислителя осуществляется от встроенной литиевой батареи, емкостью 2 А·ч, с напряжением 3,65 В и сроком службы не менее 4 лет, при частоте считывания полного архива на ПК не более 3 раз в сутки и работе индикации ЖКИ не более 1 часа в сутки. Состояние батареи контролируется в процессе работы. При снижении напряжения ниже порогового (\approx 3,15B), информация об этом индицируется на ЖКИ зажиганием сегмента (точки), расположенной в правом нижнем углу индикатора, регистрируется в архиве и может быть выведена на ПК (подробнее см. программу «ТМК-Сервис» Руководство пользователя ППБ.408843.027РП).

(См. примеры отображения информации на ЖКИ в таблице 6.1).

Примечание - Вычислитель сохраняет полную работоспособность при снижении напряжения до 3 В.

- 2.6 Показатели надежности:
- средний срок службы, лет, не менее12
- средняя наработка на отказ, час, не менее......50 000
- 2.7 Габаритные и присоединительные размеры вычислителя указаны в ПРИЛОЖЕ-НИИ А.
- 2.8 Уравнения преобразования сигналов от преобразователей расхода и температуры в тепловую энергию, мощность, массу и массовый расход определяются конфигурацией схемы измерения и соответствуют представленным в ПРИЛОЖЕНИИ Б.

Примечания

- 1 Сокращения принятые в ПРИЛОЖЕНИИ Б :
- $T\Pi$ трубопровод, Γ BC система горячего водоснабжения, Π P преобразователь расхода; индекс номер обслуживаемого трубопровода, Δt разность температур теплоносителя между измерительными каналами; P давление; ρ плотность воды при измеренном (договорном) значении температуры и договорном давлении, остальные обозначения см. табл.1.
- 2 Для схем № 5...10, 15...24, в которых задается договорное значение температуры в источнике холодной воды, результаты измерений количества теплоты должны корректироваться в соответствии с ГОСТ Р 8.592-2002.
- 3 При измерении объема (расхода) дополнительным каналом уравнения преобразования импульсного сигнала от преобразователя расхода в значение объема (м³) и (расхода (м³/ч): $V_5 = N_5 \cdot \Delta u_5$; $g_5 = f_5 \cdot \Delta u_5 \cdot 3600$.

3 УСТРОЙСТВО И РАБОТА ВЫЧИСЛИТЕЛЯ

3.1 Принцип работы вычислителя основан на преобразовании вычислителем сигналов от первичных преобразователей в значения измеряемых параметров теплоносителя и последующем вычислении, по соответствующим измерительной схеме уравнениям, тепловой энергии и других параметров теплоносителя.

- 3.2 Вычислитель в зависимости от конфигурации измерительной схемы, может обеспечивать измерение сигналов:
 - преобразователей расхода (от 1 до 5);
 - термопреобразователей (от 1 до 4);
 - преобразователей давления (до 4-х).
 - 3.3 Вычислитель предназначен для работы с измерительными преобразователями:
- -преобразователи расхода с импульсным выходом типа «открытый коллектор» или числоимпульсным выходом типа «сухой контакт» на герконе с частотой до 10 Гц;
- термопреобразователи сопротивления с однотипными характеристиками 100П, Pt100, 500П, Pt500, c HCX W_{100} = 1,391 или W_{100} = 1,385 по ГОСТ 6651;
- преобразователи давления с выходным сигналом постоянного тока 0-5 или 4-20мА по ГОСТ 26.011 (для исполнений с измерением давления).

В процессе работы вычислитель производит измерения сопротивления термопреобразователей, выходного тока преобразователей давления, а также счет выходных импульсов преобразователей расхода, вычисляет по известным зависимостям значения температуры, массового расхода и массы (объема) теплоносителя, тепловую энергию и тепловую мощность. Счет импульсов, формируемых преобразователями расхода, осуществляется непрерывно по каждому каналу, а измерение температуры и давления периодически один раз в три минуты.

Цена выходного импульса (м³/имп) преобразователей расхода, значения максимальных расходов для определения параметров теплоносителя по схемам измерения и выходные параметры источников сигналов, подключаемых к вычислителю, представлены в ПРИЛОЖЕНИИ Г в соответствии с таблицами ГЗ-Г7.

Вычислитель ТМК-НЗ предназначен для обеспечения измерений параметров по двум теплообменным контурам (См.ПРИЛОЖЕНИЕ Б), в которых задействованы 1,2 и 3,4 каналы соответственно.

Имеющийся в вычислителе дополнительный 5 канал, обеспечивает измерение объема (M^3) и расхода (M^3 /ч) теплоносителя.

- 3.4 Устройство вычислителя
- 3.4.1 Вычислитель конструктивно выполнен в ударопрочном пластмассовом корпусе, обеспечивающем пылебрызгозащищенное исполнение прибора, и состоит из блока коммутации и блока вычислителя (См. ПРИЛОЖЕНИЕ A).
- 3.4.2 Подключение внешних устройств осуществляется через гермовводы к клеммным колодкам, расположенным в корпусе блока коммутации. В корпусе блока вычислителя в специальном отсеке (экране) находится печатная плата с размешенными на ней электронными компонентами. Там же расположен сервисный отсек, в котором размещены батарея питания тепловычислителя, разъем XP1 для проведения инициализации (более подробно см. п.6.5.2), разъем XP2 для включения питания, разъем XP4 для настройки входов преобразователей расходов (ПРИЛОЖЕНИЕ Г), разъем XP5 для входа в режим программирования (более подробно см.п.6.5.3). Доступ внутрь сервисного отсека прегражден крышкой, закрепленной винтами (См. Рис.А.1 Вид А, ПРИЛОЖЕНИЕ А).

Для переключения режимов индикации, на передней панели вычислителя, предусмотрены две кнопки управления. Кнопка «Параметры» (красная) позволяет осуществить вывод на индикацию группу параметров внутри одного измерительного канала, а кнопка «Каналы» (синяя) - осуществляет переключение измерительных каналов и просмотр сервисного меню и меню архива. (См структурные схемы МЕНЮ вычислителя в ПРИЛОЖЕНИИ Д).

3.4.3 Структурная схема ТМК-НЗ представлена на рис.3.1

Микропроцессор осуществляет прием и обработку входных сигналов, в соответствии с записанной в нем внутренней программой, расчет и хранение в памяти среднечасовых и среднесуточных параметров теплоносителя, регистрацию аварийных ситуаций в системе, подсчет времени, контроль батареи питания, вывод необходимой информации на ЖКИ, и выдачу данных по внешнему запросу через один из своих интерфейсов.

Термопреобразователи подключаются к вычислителю по четырехпроводной схеме, величины их сопротивлений преобразуются в напряжение, подаваемое на аналого-

цифровой преобразователь (АЦП). Ток, пропорциональный давлению теплоносителя в трубопроводе, также преобразуется в напряжение, которое также измеряется при помощи АЦП.

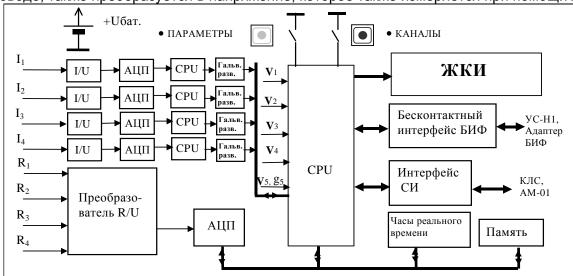


Рисунок 3.1

Примечание — Вычислитель использует договорное значение давления для исполнений ТМК-Н3-X0 постоянно, а для других исполнений (с измерением давления) в случае ошибочного измерения давления.

- 3.4.4 Визуализация информации осуществляется на 8-разрядном однострочном ЖКИ, как в цифровом виде, так и посредством курсоров, указывающих на индицируемый параметр, мнемоническое обозначение которых расположено в таблице на панели прибора.
- 3.4.5 Вычислитель обеспечивает контроль состояния линии связи с преобразователями расхода (только для преобразователей расхода вихревых электромагнитных ВПС1(2), ВПС3 и преобразователей расхода электромагнитных МастерФлоу).

При наличии аварийных ситуаций прибор может прекращать вычисление тепловых параметров (более подробно см. ПРИЛОЖЕНИЕ В).

В случае если оператор в течение ~ 2 мин. не пользуется кнопками управления, вычислитель переходит в режим пониженного энергопотребления (sleep), ЖКИ гаснет, обработка входных сигналов продолжается. Выход из этого режима происходит при нажатии любой из кнопок управления автоматически.

3.4.6 В вычислителе предусмотрен ввод значения температуры в источнике холодной воды либо с клавиатуры вычислителя, либо через внешний интерфейс СИ. Установленное значение температуры фиксируется в электронном архиве.

4 МАРКИРОВКА, ПЛОМБИРОВАНИЕ, УПАКОВКА

- 4.1 Маркировка и пломбирование.
- 4.1.1 На корпусе вычислителя нанесены следующие маркировочные обозначения:
- наименование исполнения;
- его заводской номер;
- знак утверждения типа;
- товарный знак завода-изготовителя.
- 4.1.2 Вычислитель пломбируется 2 клеймами в соответствии с рис. А1 (Вид A) ПРИ-ЛОЖЕНИЯ A:
 - клеймо БТК;
 - клеймо поверителя и БТК при поверке.

Результаты первичной поверки заверяются оттиском поверительного клейма в паспорте. При периодической (внеочередной) поверке, при признании изделия годным к применению вычислитель пломбируют оттиском клейма поверителя и делают отметку в паспорте в соответствии с ПР50.2.006.

4.1.3 С целью защиты от несанкционированного вмешательства в работу вычислителя прибор подлежит пломбированию теплоснабжающей организацией.

- 4.1.4 Пломбирование осуществляется путем пропускания проволоки в отверстия головок винтов, расположенных по обе стороны крышек корпуса с установкой навесной пломбы (см. ПРИЛОЖЕНИЕ A).
 - 4.2 Упаковка вычислителя
- 4.2.1 Вычислитель упаковывается в полиэтиленовый пакет или в упаковочную бумагу и укладывается в картонную коробку.

Эксплуатационная документация упаковывается в полиэтиленовый пакет и укладывается вместе с вычислителем в картонную коробку.

4.2.2 Упаковка нескольких вычислителей, упакованных в соответствии с п.4.2.1, производится в картонные (ГОСТ 9142) или фанерные (ГОСТ 5959) ящики, выложенные внутри упаковочной бумагой по ГОСТ 8828.

Для предотвращения смещений и поломок вычислитель внутри ящика крепится при помощи деревянных вкладышей, упоров и картонных амортизаторов.

- 4.2.3 В ящик вкладывается упаковочный лист, содержащий следующие сведения:
- наименование и товарный знак предприятия-изготовителя;
- обозначение упакованных изделий;
- количество изделий в ящике:
- дата упаковки;
- фамилию упаковщика.

ЧАСТЬ ІІ

ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

5 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

- 5.1 ВНИМАНИЕ! Нельзя располагать вычислитель вблизи мощных источников электромагнитных полей (силовые трансформаторы, электродвигатели, неэкранированные силовые кабели и т.п.).
- 5.2 В помещении, где эксплуатируется вычислитель, не должно быть среды, вызывающей коррозию материалов, из которых он изготовлен, а также конденсации влагосодержания окружающего воздуха.

6 ПОДГОТОВКА К ЭКСПЛУАТАЦИИ

6.1 Меры безопасности

В вычислителе отсутствуют опасные факторы, так как используемое для его питания напряжение равно 3.65В.

Примечание - Ввиду отсутствия выброса в окружающую среду вредных веществ, вычислитель является экологически чистым прибором.

- 6.2 Общие требования
- 6.2.1 Перед началом монтажа необходимо произвести внешний осмотр изделия, при этом проверяется:
 - -отсутствие видимых механических повреждений:
 - -состояние соединительных разъемов и клемм;
 - -наличие оттисков клейма поверителя и БТК завода-изготовителя на пломбах.

Примечание - После пребывания вычислителя при отрицательных температурах, соответствующих условиям транспортирования, его необходимо выдержать в отапливаемом помещении не менее 24 часов.

- 6.3 Монтаж вычислителя
- 6.3.1 Монтаж вычислителя производить в удобном для снятия показаний месте, соответствующим условиям эксплуатации. При несоответствии выбранного места расположения вычислителя условиям эксплуатации, монтаж производить в защитном шкафу (кожухе), обеспечивающим необходимую степень защиты.
- 6.3.2 Вычислитель имеет вертикальное исполнение. Крепление тепловычислителя осуществляется при помощи крепежного комплекта, габаритные и присоединительные размеры приведены в ПРИЛОЖЕНИИ А. Рекомендуемая высота установки 1,4...1,6 м от пола.

- 6.4 Подключение измерительных преобразователей
- 6.4.1 Подключение к вычислителю измерительных преобразователей проводится в соответствии с ПРИЛОЖЕНИЕМ Г.
- 6.4.2 Подключение к вычислителю преобразователей расхода и давления следует вести проводом сечением не менее 0,2 мм² в ПХВ оболочке (например: типа МГШВ). Длина линии связи между преобразователем и ТМК-Н3 не должна превышать 100 м.

Примечание — Длина линии связи между преобразователем расхода и вычислителем не должна превышать 20м при подключении преобразователя расхода к клеммам К1 при отсутствии джампера на XP4.(См таблицу Г.4 в ПРИЛОЖЕНИИ Г).

6.4.3 Подключение к вычислителю термопреобразователей необходимо вести по четырехпроводной схеме двумя витыми парами (потенциальные линии отдельно от токовых) проводов сечением не менее 0,2 мм². Длина линии связи между термопреобразователем и вычислителем не должна превышать 100 м. При расстоянии до термопреобразователей более 10м или при наличии промышленных радиопомех соединительные линии необходимо прокладывать в металлорукаве, при этом заземление металлорукава допускается выполнять только со стороны вычислителя.

Примечание. Линии связи, указанные в п.6.4.2 и 6.4.3, необходимо располагать отдельно от силовых электрических цепей с напряжением 220/380В, частотой 50Гц.

- 6.4.4 При подключении вычислителя необходимо проследить за тем, чтобы концы проводов были плотно зажаты винтами клеммной колодки и не касались друг друга.
- 6.4.5 При нормальной работе вычислителя сообщения об ошибках должны отсутствовать. Коды ошибок приведены в ПРИЛОЖЕНИИ В. При наличии такого сообщения необходимо устранить внешние причины, нарушающие нормальную работу вычислителя.
 - 6.5 Порядок работы
 - 6.5.1 Визуальный просмотр показаний

Для визуального просмотра показаний, на передней панели вычислителя предусмотрены две управляющие кнопки «Параметры» (красная) и «Каналы» (синяя). Более подробное описание визуального просмотра показаний представлено в ПРИЛОЖЕНИИ Д (см. структурные схемы Основного меню, Сервисного меню, меню Архив и меню программирования на рисунках Д.1, Д.2, Д.3, Д.4 соответственно). Переключение параметров индикации выполняется по кольцу при последовательном нажатии красной кнопки в Основном меню: тест ЖКИ – тепловая энергия - тепловая мощность – масса – расход – температура теплоносителя – разность температур – время безошибочной работы - давление – коды ошибок – тест ЖКИ. Кнопкой «Каналы» осуществляется выбор каналов для просмотра параметров. Отсутствующий, для используемой измерительной схемы, параметр индицируется значком «- - -». Первые пять (считая слева направо) курсоров « ▼ » индицируют номер канала, а оставшиеся три – отображаемый параметр.

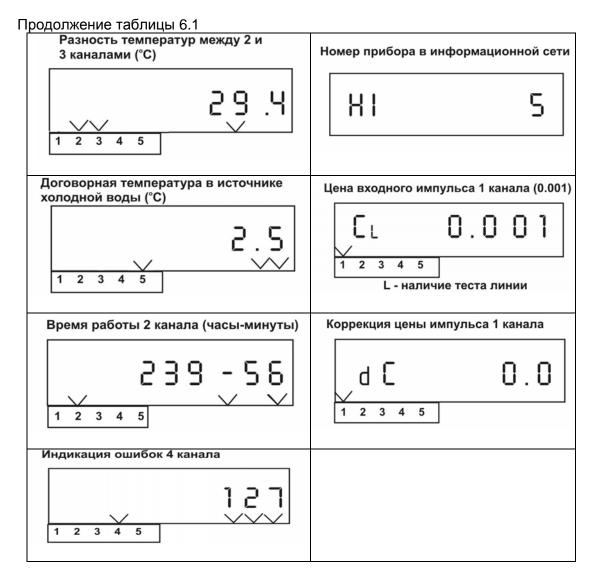
Рисунок 6.1

Соответствие курсоров отображаемым параметрам приведено на рис 6.1 и на передней панели вычислителя. Переход в сервисное меню осуществляется синей кнопкой из режима теста ЖКИ. В сервисном меню по кольцу при последовательном нажатии синей кнопки просматриваются: дата – время – номер прибора – номер измерительной схемы, для

которой предназначен данный прибор, а также индекс единицы счета тепловой энергии – номер прибора в информационной сети (при необходимости) – цена входного импульса каждого из используемых каналов – коэффициент коррекции цены импульса – дата.

Задание единицы измерений тепловой энергии проводится при инициализации вычислителя по выбору заказчика (см. карту заказа ПРИЛОЖЕНИЕ И), а при отсутствии требований - в ГДж.

Вывод показаний массы (объема) и тепловой энергии на индикатор, осуществляется в режиме с фиксированной запятой. Некоторые примеры отображения информации на ЖКИ представлены в табл.6.1.


Основное меню

Сервисное меню

Таблица 6.1

Тепловая энергия по 2 каналу (ГДж)	Тест ЖКИ
32465.8	8.8.8.8.8.8.8.8.
Тепловая мощность по 1 каналу	Дата (25 марта 2004г.)
38.8	25 - 03 - 04
Масса теплоносителя по 2 каналу (т)	Время моск. (13 часов 48 минут)
5512.577 1 2 3 4 5	13-48
Расход теплоносителя по 2 каналу (т/ч) Номер прибора (№16)	
36.75	HM 16
7, 2, 4, 8 -число усреднения; 0 - режим усреднения выключен	
Температура в 1 канале (°C)	Номер измерительной схемы (№7) (ПРИЛОЖЕНИЕ Б)
150.05	нс с т
1 2 3 4 5	Размерность счета тепловой энергии: С- Гкал; Ј-ГДж

При наличии аварийных ситуаций вычислитель выдает на ЖКИ сообщение о наличии ошибки и может прекратить измерение и вычисление параметров, связанных с текущей ошибкой. В архив заносятся коды ошибок, возникшие хотя бы один раз за время формирования архивной записи. Отсутствие ошибок в измерительном канале индицируется надписью «not».

Заданные при инициализации договорные температура и давление в источнике холодной воды индицируются, при переходе на соответствующий параметр в канале 5.

Коды ошибок, индицируемые на ЖКИ, представлены в ПРИЛОЖЕНИИ В.

При индикации текущих параметров отсутствуют коды системных ошибок.

Контроль линии связи (обрыв или КЗ) между преобразователем расхода и вычислителем может осуществляться только с преобразователями расхода, специально оборудованными для этой цели. (См. таблицу Г.1, ПРИЛОЖЕНИЕ Г).

6.5.2 Инициализация вычислителя ТМК-Н3

Инициализация вычислителя осуществляется с СОМ-порта ПК через специализированный адаптер БИФ, с помощью программы «ТМК-Сервис», поставляемый предприятием-изготовителем отдельно. Адаптер БИФ подключается при помощи ленточного кабеля к разъему XP1, расположенному в сервисном отсеке блока вычислителя (см. ПРИЛОЖЕНИЕ А) и СОМ — порту ПК (при использовании 9-контактного разъема или 25-ти контактного разъема - согласно схемы на рис. 6.2). Подробности проведения инициализации — см. в «ТМК-Сервис» Руководство пользователя.

Адаптер БИФ Вилка DM-9M	К компьютеру Розетка DB-9F	
3	3	TXD
2	2	RXD
7	7	RTS
6	6	DSR
5	5	GND
4	4	DTR

Кабель-удлинитель DB-9M – DB-9F

Переходник DB-9M – DB-25F

Адапте Вилка I		Розетка DB-9F	Вилка DM-9M	К компьютеру Розетка DB-25F
TXD	3	3	3	2
RXD	2	2	2	3
RTS	7	7	7	4
DSR	6	6	6	6
GND	5	5	5	7
DTR	4	4	4	20

Рис 6.2

При проведении инициализации в вычислитель, с ПК заносятся данные, представленные в таблице 6.2:

Таблица 6.2

-номер измерительной схемы вычислителя;			
-заводской номер прибора;			
-номер прибора в информационной сети;			
-тип НСХ термопреобразователей сопротивления;			
-размерность счета тепловой энергии (Гкал или ГДж);			
-параметры преобразователей расхода (счетчиков воды) (Ду, цена импульса,			
g _{min}) по каждому из используемых каналов;			
-требования к контролю линии связи между преобразователями расхода (только для преобразователей расхода ВПС1(2), ВПС3 и МастерФлоу) и вычислителем;			
-значения договорного давления и температуры в источнике холодной воды в			
зимней и летней периоды, а также месяцы перехода на зимний и летний периоды;			
-значения договорного давления в измерительных каналах (для исполнения ТМК-			

-значения договорного давления в измерительных каналах (для исполнения ТМК-Н3-X0 постоянно, а для других исполнений (с измерением давления) в случае ошибочного измерения давления)

-максимальное значение давления преобразователя давления

Примечание — по окончании инициализации адаптер БИФ отсоединить при включенном питании.

6.5.3 Настройка параметров при эксплуатации

В вычислителе предусмотрена возможность настройки отдельных параметров непосредственно у потребителя без проведения инициализации.

Изменению могут подвергаться следующие данные в Основном меню:

- договорные температура и давление в источнике холодной воды;
- договорные давления в измерительных каналах.

Изменению могут подвергаться следующие данные в Сервисном меню:

- номер прибора в локальной информационной сети;
- коэффициент коррекции цены импульса по 1-4 каналам.

Пределы задания параметров приведены в таблице 6.3.

Таблица 6.3

Наименование параметра	Допустимые пределы
Договорная температуры в источнике холодной воды, °C	225,5
Договорное давление, кгс/см ²	016,0
Коэффициент коррекции цены импульса, %	± 2,3
Номер прибора в информационной сети	063*

^{*} Примечание – 0 – адрес общего доступа.

Для изменения параметра следует открутить 2 крепежных винта на крышке сервисного отсека, установить джампер на XP5 – См пример изменения величины давления Px в 5-м канале на рисунке Д.4 в ПРИЛОЖЕНИИ Д. Выход из режима программирования осуществляется удержанием кнопки «Каналы» в нажатом состоянии 2...4 с. Если вводимый параметр находится вне допустимых пределов, выход из режима программирования становится невозможен. В этом случае, необходимо установить правильное значение параметра и осуществить выход из режима как указано выше.

По завершении ввода всех корректируемых параметров джампер следует удалить. В противном случае, через 60 секунд после последнего нажатия любой кнопки, на индикатор будет постоянно выведены 8 штриховых линий « - - - - - ». После удаления джампера восстановится нормальный режим индикации.

После выполнения настройки вычислитель подлежит обязательному пломбированию.

Примечание – факт входа в режим программирования фиксируется в архиве.

6.5.4 Вывод данных на внешнее устройство

Вывод данных с вычислителя на ПК может осуществляться через адаптер БИФ, при помощи переносного устройства считывания УС-Н1, либо через модем (при использовании сетевого контроллера КЛС или адаптера модема АМ). При этом могут передаваться как текущие значения параметров, так и архивные данные. Считывание архива может быть полным (передача всего массива данных) и суточным (за любое количество целых суток, начиная с последних). Данные по каналам, не используемые в заданной измерительной схеме прибора, отсутствуют.

Чтение, обработка и визуализация на ПК переданной с вычислителя информации осуществляется под управлением программного обеспечения «Менеджер данных» или «ТМК-Сервис» (подробнее смотри Руководство пользователя к этим программам).

При выводе текущих параметров на внешнее устройство передаются данные, представленные в табл.2.1 и табл.6.2, по каждому, используемому в заданной схеме каналу.

Для чтения данных непосредственно на ПК необходимо установить щуп адаптера БИФ в крайний левый штуцер вычислителя до упора и слегка зажать его при помощи гайки штуцера, или подключить адаптер БИФ при помощи ленточного кабеля к разъему XP1, расположенному в сервисном отсеке блока вычислителя. После чего запустить соответствующую программу и считать необходимые данные.

(См. ПРИЛОЖЕНИЕ А – рис.А.З Адаптер БИФ).

Одновременное использование нескольких коммуникационных каналов для чтения данных недопустимо.

Вывод данных через сетевой контроллер КЛС (адаптер модема АМ), модем, телефонную линию связи на ПК приведен в документации:

- «Контроллер локальной сети КЛС» Руководство по эксплуатации;
- «Адаптер модема АМ» Руководство по эксплуатации.

6.6 Содержание архива

Вычислитель обеспечивает сохранение показаний параметров в электронном архиве. Емкость среднечасового архива рассчитана на 45 суток, емкость среднесуточного архива – на 365 суток.

Содержание одной записи среднечасового архива представлено в таблице 6.4. Таблица 6.4

Наименование параметра
1. Время (час 023), дата
2. Измеренная тепловая энергия (Q ₁ , Q ₃) за 1 час
3. Измеренная масса теплоносителя в 14 трубопроводе за 1 час
4. Измеренный объем холодной воды в 5 трубопроводе за 1 час
5. Среднечасовая температура теплоносителя в 14 трубопроводе
6. Среднечасовая температура холодной воды
7. Среднечасовое давление теплоносителя в 14 трубопроводе
8. Время безаварийной работы (тр1, тр3) в течение 1 часа
9. Коды ошибок в течение 1 часа по 14 каналу
10.Коды системных ошибок в течение часа

Среднечасовые параметры определяются как среднее арифметическое значений, измеренных в течение часа.

Содержание одной записи среднесуточного архива представлено в таблице 6.5.

Таблица 6.5

Наименование параметра	
1 Дата (день-месяц-год)	
2 Измеренная тепловая энергия (Q ₁ , Q ₃) за 1 сутки	
3 Измеренная масса теплоносителя в 14 трубопроводе за 1 сутки	
4 Измеренный объем холодной воды в 5 трубопроводе за 1 сутки	
5 Среднесуточная температура теплоносителя в 14 трубопроводе	
6 Среднесуточная температура холодной воды	
7 Среднесуточное давление теплоносителя в 14 трубопроводе	
8 Время безаварийной работы (т _{Р1,} т _{Р3}) в течение 1 суток	
9 Коды ошибок в течение суток по 14 каналу	
10 Коды системных ошибок в течение суток	

Среднесуточные параметры определяются как среднее арифметическое значений, измеренных в течение суток.

6.8 Просмотр архива на ЖКИ

Переход в режим просмотра архивных данных на индикаторе вычислителя осуществляется удержанием кнопки «Параметры» из режима индикации теста ЖКИ (См ПРИЛО-ЖЕНИЕ Д, рис.Д.3). При этом на ЖКИ вычислителя высвечивается дата последней суточной записи.

Если нет архива, то переход в режим просмотра не осуществляется.

Примечание — Максимальное количество просматриваемого архива на ЖКИ - 255 последних суток.

Примеры индикации архивных данных приведены в таблице 6.6.

Таблица 6.6

Расположение разделительных штрихов (см. табл.6.6) служит определителем направления просмотра: внизу — к предыдущей дате (по убыванию), вверху — к последующей дате (по возрастанию). Последовательное нажатие кнопки «Параметры» осуществляет перебор архивных параметров внутри одной даты), а нажатие кнопки «Каналы» — просмотр параметра по выбираемым датам. Расположение курсоров при индикации параметров и каналов аналогично изложенному выше. Изменение направления просмотра по возрастанию или убыванию даты осуществляется удерживанием кнопки «Каналы» в замкнутом состоянии до изменения положения курсора направления.

Выход из режима просмотра архивных данных осуществляется удержанием кнопки «Параметры» в замкнутом состоянии в течение 2...4 с.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1 Техническое обслуживание вычислителя должно проводиться персоналом, изучившим настоящее руководство по эксплуатации.
- 7.2 Техническое обслуживание проводится с целью обеспечения нормируемых технических данных и характеристик и включает в себя следующие виды работ:
 - внешний осмотр во время эксплуатации;
 - периодическая поверка;
 - замена элементов питания;
 - консервация при снятии на продолжительное хранение.
- 7.3 При внешнем осмотре, который рекомендуется проводить не реже одного раза в месяц, проверяется наличие пломб, сохранность соединительных линий, отсутствие течи в соединениях, коррозии и других повреждений.
 - 7.4 Периодическая поверка проводится один раз в 4 года, согласно разделу 8.
- 7.5 Контроль состояния батареи вычислителя осуществляется визуально по ЖКИ и при передаче данных на ПК. Периодичность замены элемента питания один раз в 4 года, либо по мере необходимости. Замена батареи проводится в отапливаемых помещениях при нормальных климатических условиях.

Примечание - Для пайки выводов батареи допускается использовать паяльник с рабочим напряжением не более 36B, с заземленным жалом. При этом должны быть приняты меры по защите электронных компонентов печатных плат от статического электричества.

Замена батареи у вычислителя (см. ПРИЛОЖЕНИЕ А. Рис.А.1) производится в следующем порядке:

- отсоединить блок вычислителя от блока коммутации;
- снять крышку сервисного отсека;
- снять джамперы питания;
- произвести замену батареи;
- установить джамперы питания на место;
- установить крышку сервисного отсека и подсоединить корпус блока вычислителя к корпусу блока коммутации.

Примечание - Замена элементов питания производится либо представителем предприятия-изготовителя, либо организацией, имеющей на это право. После замены батареи вычислителя повторная инициализация не требуется.

- 7.6 При снятии вычислителя с объекта для продолжительного хранения, его необходимо просушить, закрыть заглушками разъемы и хранить в условиях, оговоренных в разделе 11. При вводе вычислителя в эксплуатацию после длительного хранения, поверка его не требуется, если не истек срок предыдущей поверки.
- 7.7 В процессе эксплуатации наружные поверхности вычислителя должны содержаться в чистоте.

8 МЕТОДИКА ПОВЕРКИ

Настоящая методика распространяется на тепловычислитель ТМК-Н3 и устанавливает методы и средства его первичной и периодической поверок .

Первичной поверке подлежат вычислители при выпуске из производства.

Периодической поверке, подлежат вычислители, находящиеся в эксплуатации. Межповерочный интервал - 4 года.

Внеочередной поверке в объеме периодической подвергают вычислители, в случае утраты на них документов, подтверждающих их поверку и после ремонта.

8.1 Операции и средства поверки

8.1.1 При выполнении поверки выполняют операции, приведенные в таблице 8.1.

Таблица 8.1.

Наименование операции	Методика проведения поверки
1 Внешний осмотр	8.4.1
2 Опробование	8.4.2
3 Определение погрешностей	8.4.3

8.1.2 При проведении поверки применяют средства, приведенные в таблице 8.2.

Таблица 8.2

Наименование	Технические характеристики				
оборудования	(назначение)				
Частотомер электронно -	Диапазон измеряемых частот 0,1Гц 200МГц,				
счетный Ч3-63	погрешность $\pm 5 \times 10^{-7} + T_{\text{такт}} / n T_{\text{изм}}$				
Магазин сопротивлений	Диапазон сопротивлений 0,001111111,111 Ом, класс точности 0,02				
P-4831					
Прибор для поверки вольт-	Диапазон токов 1 мкА100 мА, погрешность 2,5·10 ⁻⁴ Iн+1 мкА				
метров В1-12					
*Контроллер измеритель-	Диапазон генерируемых частот 0,0022049Гц; количество импуль-				
ный КИ-2	сов 116777215; погрешность задания частоты ±0,02%;				
*Адаптер БИФ	Прием - передача данных на ПК				
ПК	(для Window`s-98 и выше) Визуализация результатов измерений				
*Программное обеспечение	Инициализация вычислителя, организация приема данных, вывод на				
«ТМК-Сервис»	экран ПК				

^{*-} Поставляется ЗАО НПО «Промприбор» по отдельному заказу.

Допускается использование других средств измерений и принадлежностей с характеристиками, аналогичными указанным в таблице 8.2.

При получении в процессе любой из операций отрицательных результатов поверку прекращают. Вычислитель после ремонта, настройки и регулировки (при необходимости), подвергают повторной поверке в полном объеме п.8.1.

- 8.2 Требования безопасности
- 8.2.1 К работе, по проведению поверки, допускаются лица, изучившие эксплуатационную документацию на вычислитель, приборы и оборудование, указанные в таблице 8.2, прошедшие инструктаж на рабочем месте и имеющие квалификационную группу по электробезопасности не ниже 2.
- 8.2.2 Во время подготовки и при проведении поверки соблюдают порядок выполнения работ, требования безопасности и правила, установленные соответствующими эксплуатационными документами.

- 8.3 Условия поверки и подготовка к ней:
- 8.3.1 При проведении поверки соблюдают условия, приведенные в таблице 8.3.

Таблица 8.3

Наименование параметра	Единицы измерения	Значение
Температура окружающего	°C	20 <u>+</u> 5
воздуха		
Относительная влажность	%	30 80
Атмосферное давление	кПа	84 - 106,7
Напряжение питающей сети	В	220±10%
Частота питающей сети	Гц	50±1

- 8.3.2 Перед началом поверки:
- убеждаются, что образцовые средства поверены метрологической службой и сроки их поверки не истекли;
 - собирают электрическую схему поверки;
 - включают средства поверки и прогревают их в течение 30 минут.
 - Электрическая схема поверки вычислителя приведена в ПРИЛОЖЕНИИ Е.
- 8.3.3 Перед поверкой, вычислитель выдерживают в нормальных условиях не менее 8 часов.
 - 8.4 Проведение поверки
 - 8.4.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие поверяемого вычислителя следующим требованиям:

- соответствие номера и исполнения вычислителя паспорту;
- отсутствие механических повреждений, влияющих на работу;
- отсутствие механических повреждений гермовводов;
- отсутствие загрязнений, повреждений и окислений контактов соединителей.

Состояние гермовводов и контактов соединителей проверяют, открутив 4 винта, расположенных по углам корпуса блока вычислителя и отсоединив корпус блока вычислителя от корпуса блока коммутации.

Вычислитель, не удовлетворяющий указанным требованиям, к дальнейшей поверке не допускают.

8.4.2 Опробование

Вызывают на ЖКИ сервисное меню, для чего кнопкой ПАРАМЕТРЫ переходят в режим ТЕСТ ЖКИ, после чего нажимают кнопку КАНАЛЫ и проверяют совпадение даты и времени вычислителя с текущими (т. к. внутреннее время прибора не переводится на летнее и зимнее, допускается несовпадение с текущим на \pm 1 час). Далее определяют настроечные параметры: номер прибора и схемы измерения, заданные цены импульсов настройки по каждому каналу, температуру и давление в источнике холодной воды (при необходимости).

Переходят в режим основного меню и определяют по каждому каналу параметры, подлежащие поверке (температура, масса, давление, тепловая энергия) для данного номера схемы измерения.

8.4.3 Определение погрешностей

Вычислитель располагают на столе рядом со средствами измерений, включают их питание, проводят прогрев в течение 30 мин. и необходимую настройку и калибровку. Подключают вычислитель к приборам и оборудованию в зависимости от конфигурации используемой измерительной схемы. При этом магазины сопротивлений соединяют по четырехпроводной схеме, выходы измерительного контроллера подключают ко входам вычислителя, обрабатывающим сигналы от преобразователя(ей) расхода, а выходы калибраторов тока (В1-12) - ко входам, измеряющим сигналы от преобразователей давления, согласно ПРИЛОЖЕНИЮ Е.

Перед проведением измерений контролируют отсутствие индикации LB, свидетельствующее о необходимости замены батареи, а также (при подключенных приборах и заданных параметрах измерения) в течение процесса измерения отсутствие сообщений об ошибках по поверяемому параметру по ЖКИ вычислителя.

8.4.3.1 Определение погрешностей измерений температуры и разности температур Подключают магазин сопротивлений одновременно ко всем поверяемым каналам. Кнопками ПАРАМЕТРЫ и КАНАЛЫ выбирают режим индикации температуры. Последовательно устанавливают на магазине значение сопротивлений в зависимости от типа НСХ термопреобразователей в соответствии с таблицей 8.4.

Таблица 8.4

Температура,	Значение сопротивления, Ом								
°C	W ₁₀₀ =	: 1,391	W ₁₀₀ =	=1,385					
	100∏	500∏	Pt100	Pt500					
149	157,85	789,23	156,95	784,76					
75	129,44	647,21	128,99	644,94					
4	101,59	507,93	101,56	507,81					

Тип НСХ термопреобразователей определяют считав данные инициализации через адаптер БИФ на ПК при помощи программного обеспечения «ТМК-Сервис».

Считывают с индикатора с интервалом не менее 3 мин. показания температуры (ti) и разности температур (Δt_{ij}) между каналами в соответствии со схемой измерений, введенной в вычислитель.

Определяют для каждого канала вычислителя абсолютную погрешность измерений температуры:

$$\Delta t_{i}^{TB} = t_{u_{3M}} - t_{3a\partial}$$

За абсолютную погрешность измерений температуры принимают максимальное из значений $\varDelta t^{TB}{}_{i}$

Определяют разность температур между измеренными значениями температур одного теплообменного контура:

$$\Delta t_{i,j} = t_i - t_j$$

За абсолютную погрешность измерений разности температур принимают максимальное из значений $\Delta t_{ii.}$

Вычислитель считают поверенным по данным параметрам, если все измеренные значения температуры не выходят за пределы $\pm~0.25^{\circ}$ C, а разности температур - не выходят за пределы $\pm~0.1^{\circ}$ C.

8.4.3.2 Определение погрешности измерений давления

Входят в режим индикации давления. Последовательно задавая калибратором величины токов в рабочем диапазоне вычислителя согласно таблице 8.5, пропорциональных давлению, считывают показания давления на ПК. Считывание показаний проводят через адаптер БИФ с использованием программного обеспечения «ТМК-Сервис» после их изменений на табло прибора с периодичностью не менее 3 минут после задания величины тока.

Таблица 8.5

Давление	Заданный в ТМК диапазон токов						
кгс/см ²	420 мА	05 мА					
0,3	4,30	0,09375					
8	12,0	2,50					
15	19,0	4,6875					

Примечание - Для каналов, где задана договорная величина давления, поверку не проводят.

Вычисляют приведенную погрешность измерений давления:

$$\gamma^{TB} = \frac{P_{u_{3M}} - P_{3a\partial}}{P_{u_{avc}}} \cdot 100\%$$

еде $P_{\text{изм}}$ – показания давления, считанные на ПК;

 P_{3ad} — заданные значения из табл.8.5;

 $P_{\text{макс}} = 16 - \text{кас/см}^2$ верхний предел измерения давления

За погрешность измерений давления принимают максимальное из всех полученных значений γ^{TB} .

Вычислитель считают поверенным по данному параметру, если приведенная погрешность измерений давления по каждому задействованному в измерительной схеме каналу, не выходит за пределы $\pm 0.3\%$.

8.4.3.3 Определение погрешности измерений массы (объема)

Задают магазином сопротивление, соответствующее температуре 75°C, задают калибратором величину тока, соответствующую давлению 8 кгс/см². Дожидаются показаний температуры и давления, соответствующих заданным. Считывают данные через адаптер БИФ с использованием программного обеспечения «ТМК-Сервис» на ПК и фиксируют начальные показания массы (G_H) в поверяемом канале. Подают на вход поверяемого канала количество *N≥10* импульсов. Через паузу >4с считывают на экран ПК и фиксируют конечные показания массы (G_K) в поверяемом канале.

Определяют относительную погрешность измерений массы:
$$\mathcal{S}_{G}^{\mathit{TB}} = \frac{(G_{\kappa} - G_{n}) - G_{\mathit{pac}}}{G_{\mathit{pac}}} \cdot 100\%$$

где Gpac - расчетное значение массы, определяемое по формуле

 $G_{pac} = N \cdot \Delta u \cdot \rho(t) / 1000$ (m)

∆и (м³/имп) - цена импульса настройки канала;

N(имп) – количество импульсов, поданных на вход испытуемого канала;

 $\rho(t)$ (кг/м 3) - плотность теплоносителя при заданных температуре и давлении в испытуемом канале

Примечание - Здесь и далее значения плотности и энтальпии теплоносителя в зависимости от температуры и давления определяются из таблиц ГСССД 98-86 «Вода. Удельный объем и энтальпия» изд. Стандартов 1986 или из справочного ПРИЛОЖЕНИЯ К. При определении плотности и энтальпии для вычисления расчетных значений массы и тепловой энергии следует учесть, что величины указанные в табл. 8.8 – соответствуют избыточному давлению, а указанные в таблицах ГСССД 98-86 и ПРИЛОЖЕНИИ К – абсолютному, поэтому пересчет проводят по формуле: $P_{a\delta c} = P_{us\delta} + 1$

Если поверяемый канал предназначен для измерений объема, то расчетное значение объема определяют по формуле: $V_5 = N_5 \cdot \Delta u_5$ (м³). В этом случае магазин сопротивлений и калибратор тока не используют.

Аналогичным способом выполняют поверку остальных каналов измерения массы (объема), задействованных в используемой схеме измерения.

За относительную погрешность вычислителя при измерении массы (объема) принимают максимальное из всех полученных значений.

Вычислитель считают поверенным по данному параметру, если значение погрешности измерений массы (объема) для каждого используемого в измерительной схеме канала, не выходит за пределы ± 0.3 %.

Примечание - Допускается определение погрешностей каналов измерений массы при любых температурах в диапазоне 3...150 °C*, и давлений 0...15,0 кгс/см².

*См. п.3 Приложения к п. 2.1.

Допускается совмещать поверку измерительных каналов при измерении массы с поверкой измерений тепловой энергии по п.8.4.3.4. При этом при определении расчетного значения, следует учитывать заданную температуру, давление и число подаваемых импульсов в соответствии с таблицей 8.6.

8.4.3.4 Определение погрешности измерений тепловой энергии

При задании сигналов от измерительного контроллера, калибратора(ов) тока и магазинов сопротивлений (см. ПРИЛОЖЕНИЕ Е) выполняют условия, представленные в таблице 8.6.

Внимание! Перед проведением измерения выполняют сброс процессора, для чего:

- отсоединяют адаптер БИФ от вычислителя;
- снимают джампер питания с разъема XP2 на время не менее 1мин.;
- устанавливают джампер питания на XP2 и подсоединяют ленточный кабель адаптера БИФ к XP1.

Считывают на экран ПК через адаптер БИФ с использованием программного обеспечения «ТМК-Сервис» и фиксируют начальные показания тепловой энергии (Q_H) .

Задают магазином(нами) сопротивление, соответствующее температуре(рам) из таблицы 8.6, а калибраторами тока — величину тока, соответствующую давлению в каналах тепловычислителя согласно таблице 8.8. Дожидаются на ЖКИ показаний температуры и давления, соответствующих заданным.

Таблица 8.6

Таолица					
№ схемы	1, 3, 5, 7,11, 13, 17,19	2, 4, 6, 8, 12, 14, 18, 20	9,10	15,16, 21, 22, 23, 24	25,26,27
Условия, при измере- нии Q₁	$t_1=145^\circ$; $t_2=125^\circ$ $N_1=20 P_1=4 P_2=2$ $t_1=75^\circ$; $t_2=72^\circ$ $N_1=20 P_1=15 P_2=8$ $t_1=30^\circ$; $t_2=20^\circ$ $N_1=20 P_1=8 P_2=4$	$t_1=145^\circ$; $t_2=125^\circ$ $N_2=20 P_1=4 P_2=2$ $t_1=75^\circ$; $t_2=72^\circ$ $N_2=20 P_1=15 P_2=8$ $t_1=30^\circ$; $t_2=20^\circ$ $N_2=20 P_1=8 P_2=4$	$N_1=20; P_1=115$ $t_1=20100^\circ;$ $t_{xe}=5^\circ P_{xe}=1$	$\begin{array}{l} t_{1}=145^{\circ};\ t_{2}=125^{\circ}\ N_{1}=20\\ N_{2}=10\ P_{1}=4;\ P_{2}=2\\ t_{1}=75^{\circ};\ t_{2}=72^{\circ}\ N_{1}=20;\\ N_{2}=10\ P_{1}=15;\ P_{2}=8\\ t_{1}=30^{\circ};\ t_{2}=20^{\circ}\ N_{1}=20;\\ N_{2}=10\ P_{1}=8;\ P_{2}=4\\ t_{xe}=5^{\circ}\ P_{xe}=1 \end{array}$	$t_1=145^\circ$; $t_2=125^\circ$ $N_1=20$ $N_3=10$ $P_1=4$; $P_2=2$ $t_1=75^\circ$; $t_2=72^\circ$ $N_1=20$; $N_3=10$ $P_1=15$; $P_2=8$; $t_1=30^\circ$; $t_2=20^\circ$ $N_1=20$; $N_3=10$ $P_1=8$; $P_2=4$ $t_3=5^\circ$ $P_3=1$
№ схемы	5, 6, 7, 8, 10	11,13,21,23	12,14,22,	17,18,19,20	24
Условия, при измере- нии Q ₃	N_3 =20; P_3 =115 t_3 =20100°; t_{xe} =5° P_{xe} =1	t_3 =145°; t_4 =125° N_3 =20 P_3 =4 P_4 =2 t_3 =75°; t_4 =72° N_3 =20 P_3 =15 P_4 =8 t_3 =30°; t_3 =20° N_3 =20 P_3 =8 P_4 =4	t_3 =145°; t_4 =125° N_4 =20 P_3 =4 P_4 =2 t_3 =75°; t_4 =72° N_4 =20 P_3 =15 P_4 =8 t_3 =30°; t_4 =20° N_4 =20 P_3 =8 P_4 =4	N_3 =20; P_3 =115 t_1 unu t_2 =20100°; t_{xe} =5° P_{xe} =1	t_3 =145°; t_4 =125° N_3 =20 N_4 =10 P_3 =4; P_4 =2 t_3 =75°; t_4 =72° N_3 =20; N_4 =10 P_3 =15; P_4 =8 t_3 =30°; t_4 =20° N_3 =20; N_4 =10 P_3 =8; P_4 =4 t_{xe} =5° P_{xe} =1

Индекс задаваемого параметра соответствует номеру измерительного канала вычислителя.

Значения сопротивлений магазинов соответствующие температурам, указанным в таблице 8.6, приведены в таблице 8.7, а значения токов, соответствующих давлению, – в таблице 8.8.

Таблица 8.7

T, °C	R, Ом (W ₁₀₀ = 1,391)		R, Ом (W	V ₁₀₀ = 1,385)		
	100 П	500 П	Pt 100	Pt 500		
145	156,33	781,64	155,46	777,28		
125	148,7	743,52	147,95	739,76		
100	139,11	695,55	138,51	692,53		
75	129,44	647,21	128,99	644,94		
72	128,28	641,38	127,84	639,2		
30	111,86	559,28	111,67	558,36		
20	107,92	539,58	107,79	538,97		
5	101,98	509,92	101,95	509,76		

Таблица 8.8

Давление	Заданный в ТМК диапазон токов					
кгс/см ²	05 мА	420 мА				
1	0,3125	5,0				
2	0,625	6,0				
4	1,25	8,0				
8	2,5	12,0				
15	4,6875	19,0				

Подают на входы вычислителя, в соответствии с заданной схемой измерений, количество импульсов, указанное в табл.8.6, с частотой следования $0.3\pm10\%$ Гц для всех измерительных каналов. Через паузу >4с считывают на экран ПК и фиксируют конечные показания тепловой энергии ($Q\kappa$).

Определяют расчетное значение тепловой энергии по формулам из ПРИЛОЖЕНИЯ Б.

Примечание - Определение Q_{pac} ведется в тех же единицах (ГДж или Гкал) в которых производится счет параметра в поверяемом вычислителе. Перевод энтальпии из ккал/кг в кДж/кг осуществляют по формуле:

h (кДж/кг) = **h** (ккал/кг)⋅ 4,1868

Определяют основную относительную погрешность измерений тепловой энергии:

$$\mathcal{S}_{\mathcal{Q}}^{ms} = \frac{Q_{usm} - Q_{pac}}{Q_{pac}} \cdot 100\%$$

Аналогичным способом определяют (при необходимости) погрешность для второго теплообменного контура, задействованного в используемой схеме измерения.

Вычислитель считают поверенным по данному параметру, если значение основной относительной погрешности измерений тепловой энергии не выходит за пределы:

8.4.3.5 Определение погрешности измерений времени

Отсоединяют вилку XP1 от платы коммутации и подключают сигнальный провод частотомера к :X1, а экран к :X20 розетки XS1. Переводят частотомер в режим измерения частоты за интервал времени 10с. Проводят не менее 3 измерений частоты следования импульсов часового кварцевого генератора.

Определяют отклонение суточного хода по формуле:

Определяют основную относительную погрешность измерений времени с учетом суточной поправки (au_{RTC}) по формуле:

$$\delta_{\tau}^{TB} = \frac{\tau_{u_{3M}} - \tau_{RTC}}{86400} \cdot 100\%$$

Значение суточной поправки (τ_{RTC}), введенной при изготовлении вычислителя приведено в его паспорте.

Вычислитель считают поверенным по данному параметру, если основная относительная погрешность измерений времени не выходит за пределы $\pm 0,001\%$.

8.5 Оформление результатов поверки

- 8.5.1 Результаты поверки оформляют итоговым протоколом (см. ПРИЛОЖЕНИЕ Ж). В протокол заносят максимальные значения погрешностей, определенные по результатам поверки.
- 8.5.2 При положительных результатах поверки вычислителя на последний выдают свидетельство о поверке или делают отметку в паспорте в соответствии с ПР50.2.006, и пломбируют.
- 8.5.3 При отрицательных результатах поверки вычислитель к эксплуатации не допускают. Ранее действующее свидетельство аннулируют, делают соответствующую отметку в паспорте и выдают извещение о непригодности с указанием причин в соответствии с ПР50.2.006.

9 РЕМОНТ ВЫЧИСЛИТЕЛЯ

- 9.1 Ремонт вычислителя при возникновении неисправностей допускается производить только представителями предприятия-изготовителя или организацией, имеющей на это право.
- 9.2 О всех ремонтах должна быть сделана отметка в паспорте с указанием даты, причины выхода из строя и характере произведенного ремонта. После ремонта вычислитель подвергается поверке.

10 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

10.1 Возможные неисправности вычислителя приведены в таблице 10.1.

Таблица 10.1

Наименование неисправно- сти, внешнее проявление и дополнительные признаки	Вероятная причина	Методы устранения
Отсутствует индикация на ЖКИ	Разряжена батарея, Неисправность блока вычислителя	Заменить батарею Передать вычислитель в ремонт
Отсутствует индикация от- дельных сегментов ЖКИ в режиме «Тест ЖКИ»	Неисправен индикатор Неисправность блока вычислителя	Передать вычислитель в ремонт
Не выводятся данные на внешние устройства	Неисправность БИФ (СИ), Неисправность блока вычислителя	Передать вычислитель в ремонт
	Неисправность линии связи с преобразова- телями	Проверить линии связи, устранить неисправность
Показания не соответствуют ожидаемым*	Низкая помехозащи- щенность линии	Принять меры, исключающие внешние воздействия на линию
* 🗖	Неисправность преобразователя	Проверить работоспособность преобразователя, устранить неисправность

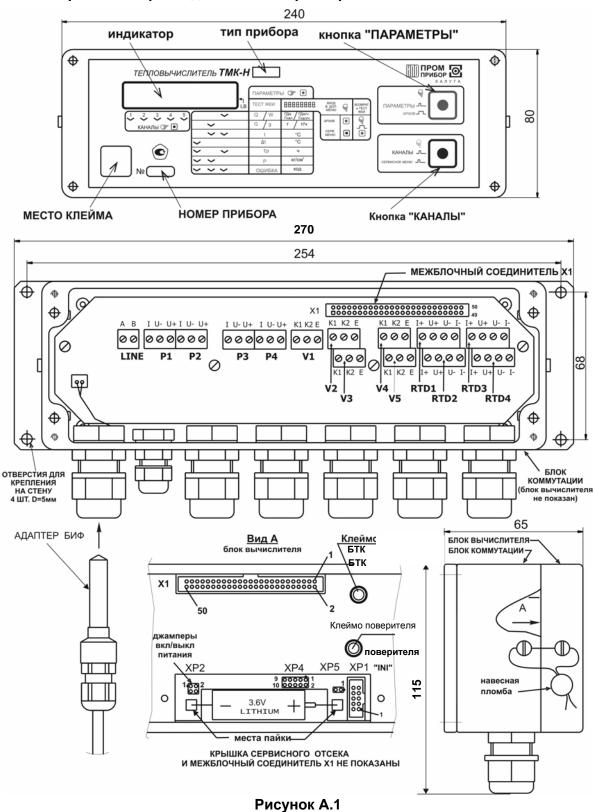
^{*} При диагностике неисправностей в работе вычислителя следует руководствоваться сведениями о наличии нештатных ситуаций для каждой измерительной схемы, представленных в ПРИЛОЖЕНИИ В

11 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

11.1 Вычислители в упаковке предприятия-изготовителя допускают транспортирование на любые расстояния при соблюдении правил, утвержденных транспортными ведомствами, и при соблюдении следующих требований:

- транспортирование по железной дороге должно производиться в крытых чистых вагонах;
- при перевозке открытым автотранспортом ящики с приборами должны быть покрыты брезентом;
- при перевозке воздушным транспортом ящики с приборами должны размещаться в герметичных отапливаемых отсеках;
- при перевозке водным транспортом ящики с приборами должны размещаться в трюме.
 - 11.2 Условия транспортирования:
- транспортная тряска с ускорением 30 м/с 2 при частоте ударов от 80 до 120 в минуту;
 - температура окружающего воздуха от +50°C до -25°C;
 - влажность до 95% при температуре +35°C.
- 11.3 Расстановка и крепление ящиков с вычислителями на транспортных средствах должны обеспечивать устойчивое положение при складировании и в пути, отсутствие смещений и ударов друг о друга. Во время погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.
- 11.4 Условия хранения для упакованных вычислителей должны соответствовать условиям хранения 1 по ГОСТ 15150 при отсутствии в складских помещениях пыли, паров кислот, щелочей и агрессивных газов.

Товаросопроводительная и эксплуатационная документация должна хранится вместе с вычислителем.


Если вычислители хранятся во включенном состоянии, то время хранения входит в гарантированный изготовителем общий срок работы вычислителя без замены батарей.

ПРИЛОЖЕНИЕ А

(обязательное)

Габаритные и присоединительные размеры тепловычислителя ТМК-Н3

Габаритные и присоединительные размеры адаптера БИФ

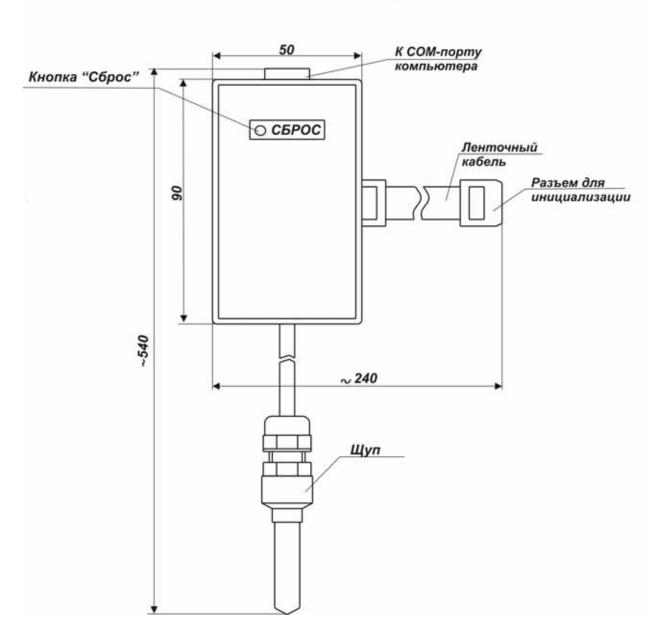


Рисунок А.2

ПРИЛОЖЕНИЕ Б

(обязательное)

Схемы измерений вычислителя ТМК-Н3

Таблица Б.1

Номер	Наименование и условное обозначение схемы измерения		Индицируемые					Формула вычисления			
схемы			параметры						параметра		
1	Закрытая система, ПР в подающем ТП G_1 f_2 f_2	Q ₁	W ₁	G ₁	81 - - - 85*	t ₁ t ₂	Δt ₁ 2	τ _{P1}	P ₁ P ₂	Err ₁ Err ₂ - -	$Q_{I} = G_{I} \cdot (h_{I} - h_{2})$ $W_{I} = g_{I} \cdot (h_{I} - h_{2})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
2	Закрытая система, ПР в обратном ТП G_2 f_2 f_2	<i>Q</i> ₁	W ₁	G_2 - V_5^*	- 82 - - 85*	t ₁ t ₂	Δt ₁₂	τ _{P1}	P ₁ P ₂	Err ₁ Err ₂	$Q_{1} = G_{2} \cdot (h_{1} - h_{2})$ $W_{1} = g_{2} \cdot (h_{1} - h_{2})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
3	Закрытая система, ПР в подающем ТП и обратном ТП (измерение Q по G_1)	<i>Q</i> ₁	W ₁	G_1 G_2 \vdots V_5^*	81 82 - - 85*	t ₁ t ₂	Δt ₁₂	τ _{P1}	P ₁ P ₂	Err ₁ Err ₂	$Q_{1} = G_{1} \cdot (h_{1} - h_{2})$ $W_{1} = g_{1} \cdot (h_{1} - h_{2})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продоля	кение таблицы Б.1	ı									
Номер	Наименование и условное обозна-		Индицируемые							Формула вычисления	
схемы	чение схемы измерения		параметры								параметра
	Закрытая система, ПР в подающем ТП и										$Q_1 = G_2 \cdot (h_1 - h_2)$
	обратном ТП (измерение Q по G_2)	Q_{I}	W_1	G_{I}	g_1	t_1	Δt_{12}	$ au_{P1}$	P_1	Err_1	$W_1 = g_2 \cdot (h_1 - h_2)$
4		-	-	G_2	g_2	t_2	-	-	P_2	Err_2	$G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
	$G_2 $	-	-	-	-	-	-	-	-	-	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$
		-	-	-	-	-	-	-	-	-	$V_5 = N_5 \cdot \Delta u_5$
		-	-	${V_5}^*$	g ₅ *	-	-	-	-	-	. 5 5 5
	Закрытая система, ПР в подающем ТП +										$Q_I = G_I \cdot \big(h_I - h_2\big)$
	ГВС										$W_I=g_I\cdot (h_I-h_2)$
	G_{l}	Q_I	W_{I}	G_{I}	g_1	t_1	Δt_{12}	$ au_{PI}$	P_1	Err_1	$Q_3 = G_3 \cdot (h_3 - h_X)$
5		-	-	-	-	t_2	-	-	P_2	Err_2	$W_3 = g_3 \cdot (h_3 - h_X)$
	Γ BC G_3 A_3	Q_3	W_3	G_3	g_3	t_3	-	$ au_{P3}$	P_3	Err ₃	$G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
	$\longrightarrow \bigcirc \bigcirc$	-	-	-	-	-	-	-	-	-	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$
		-	-	${V_5}^*$	g ₅ *	t_{x}			P_x		$V_5 = N_5 \cdot \Delta u_5$
_	Закрытая система, ПР в обратном ТП +										$Q_1 = G_2 \cdot (h_1 - h_2)$
	ГВС										$W_I = g_2 \cdot (h_I - h_2)$
		Q_I	W_{I}	-	-	t_1	Δt_{12}	$ au_{PI}$	P_1	Err_1	$Q_3 = G_3 \cdot (h_3 - h_X)$
6	$G_2 $	-	-	G_2	g_2	t_2	-	-	P_2	Err ₂	$W_3 = g_3 \cdot (h_3 - h_X)$
		Q_3	W_3	G_3	g_3	t_3	-	$ au_{P3}$	P_3	Err ₃	$G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
	$ \begin{array}{c c} & G_3 & t_3 \\ & & \end{array} $	-	-	-	-	-	-	-	-	_	$g_i = f_i \cdot \Delta u_i \cdot \rho(t_i) \cdot 3.6$
		-	-	${V_5}^*$	g ₅ *	t_{x}	-	-	P_x	_	$V_5 = N_5 \cdot \Delta u_5$

Продолжение	таблицы	Б.1
-------------	---------	-----

Номер	Наименование и условное обозна- чение схемы измерения					цицир араме	уемые етры)			Формула вычисления параметра
7	Закрытая система, ПР в подающем ТП , обратном ТП (измерение Q по G_I) + ГВС G_I G	Q ₁ - Q ₃ -	W ₁ - W ₃	G_1 G_2 G_3 \cdot V_5^*	81 82 83 - 85*	t_1 t_2 t_3 t_x	Δt ₁₂	τ _{P1} - τ _{P3} -	P_1 P_2 P_3 P_x	Err ₁ Err ₂ Err ₃ -	$Q_{1} = G_{1} \cdot (h_{1} - h_{2})$ $W_{1} = g_{1} \cdot (h_{1} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{X})$ $W_{3} = g_{3} \cdot (h_{3} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
8	Закрытая система, ПР в подающем ТП , обратном ТП (измерение Q по G_2) + ГВС G_2 f_3 f_3 f_3	Q ₁ - Q ₃ -	W ₁ - W ₃	G_1 G_2 G_3 V_5^*	81 82 83 - 85*	t_1 t_2 t_3 t_x	Δt_{I2}	$ au_{PI}$ - $ au_{P3}$ -	P_1 P_2 P_3 P_x	Err ₁ Err ₂ Err ₃ -	$Q_{I} = G_{2} \cdot (h_{I} - h_{2})$ $W_{I} = g_{2} \cdot (h_{I} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{X})$ $W_{3} = g_{3} \cdot (h_{3} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q1	W ₁	G_1 V_5^*	g ₁ g ₅ *	t ₁ t _x	1 1 1	τ _{P1}	P ₁	Err ₁	$Q_{I} = G_{I} \cdot (h_{I} - h_{X})$ $W_{I} = g_{I} \cdot (h_{I} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

peð.2

Продолжение таблицы Б.1

Номер	Наименование и условное обозна- чение схемы измерения				Инді	ициру	емые				Формула вычисления
схемы	чение ехемы измерения				па	раме	гры				параметра
	ΓΒC + ΓΒC										$Q_1 = G_1 \cdot (h_1 - h_X)$
	$ \begin{array}{c c} & G_I & f_I \\ & & \end{array} $	Q_I	W_{I}	G_{I}	<i>g</i> ₁	<i>t</i> ₁	-	$ au_{P1}$	P_1	Err_1	$W_{I} = g_{I} \cdot (h_{I} - h_{X})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{X})$ $W_{I} = (h_{1} - h_{X})$
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_3	W_3	G_3	g ₃	t_3	-	$ au_{P3}$	P_3	Err ₃	$W_3 = g_3 \cdot (h_3 - h_X)$ $G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
		-	-	V_5^*	- g ₅ *	t_x	-	-	P_x	-	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
	2 закрытые системы, ПР в подающих ТП										$Q_1 = G_1 \cdot (h_1 - h_2)$
11	$G_1 p t_1$ $F_2 p t_2$ $F_3 p t_3$ $F_4 p t_4$	Q ₁ - Q ₃ -	W ₁ - W ₃ -	G_1 G_3 G_3	g ₁ - g ₃ -	t_1 t_2 t_3 t_4	Δt_{12} - Δt_{34} -	$ au_{P1}$ - $ au_{P3}$ -	P_1 P_2 P_3 P_4	Err ₁ Err ₂ Err ₃ Err ₄	$W_{I} = g_{I} \cdot (h_{I} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{4})$ $W_{3} = g_{3} \cdot (h_{3} - h_{4})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$
		-	-	V_5^*	g ₅ *	-	-	-	-	-	$V_5 = N_5 \cdot \Delta u_5$
12	2 закрытые системы, ПР в обратных ТП G_2 f_1 f_2 f_3 f_4 f_4	Q1 - Q3	W ₁ - W ₃ -	G_2 G_4 V_5 *	- 82 - 84 85*	t_1 t_2 t_3 t_4	Δt_{12} - Δt_{34} -	ТР1 - ТР3 -	P ₁ P ₂ P ₃ P ₄	Err ₁ Err ₂ Err ₃ Err ₄	$Q_{1} = G_{2} \cdot (h_{1} - h_{2})$ $W_{1} = g_{2} \cdot (h_{1} - h_{2})$ $Q_{3} = G_{4} \cdot (h_{3} - h_{4})$ $W_{3} = g_{4} \cdot (h_{3} - h_{4})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продолжение таблицы Б.1

Номер	Наименование и условное обозна-				Инд	ициру	Формула вычисления				
схемы	чение схемы измерения		параметры								параметра
	2 закрытые системы, ПР в подающем ТП и обратном ТП (измерение Q по $G_1(G_3)$)										$Q_{I} = G_{I} \cdot (h_{I} - h_{2})$ $W_{I} = g_{I} \cdot (h_{I} - h_{2})$
13	$ \xrightarrow{G_l} \xrightarrow{\mathbf{p}} t_l $	Q_I	W_{I}	G_1 G_2	g ₁ g ₂	t_1 t_2	Δt_{12}	$ au_{P1}$	P_1 P_2	Err ₁ Err ₂	$Q_3 = G_3 \cdot (h_3 - h_4)$
	$G_3 \not $	Q_3	W_3	G_3 G_4	<i>g</i> ₃	t_3	Δt_{34}	$ au_{P3}$	P_3 P_4	Err ₃	$W_3 = g_3 \cdot (h_3 - h_4)$ $G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
	$G_4 $	-	-	V_5^*	g ₄ g ₅ *	<i>t</i> ₄	-	-	<i>1 4</i> -	Err ₄	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
	2 закрытые системы, ПР в подающем ТП и обратном ТП (измерение Q по $G_2(G_4)$)										$Q_1 = G_2 \cdot (h_1 - h_2)$ $W_1 = g_2 \cdot (h_1 - h_2)$
	$G_{l} = G_{l} = G_{l}$	Q_I	W_I	G_{I}	g_1	t_1	Δt_{12}	$ au_{PI}$	P_1	Err ₁	$Q3 = G4 \cdot (h_3 - h_4)$
14	$G_3 \not $	Q_3	W_3	G_2 G_3	g ₂ g ₃	t_2 t_3	Δt_{34}	$ au_{P3}$	P_2 P_3	Err ₂ Err ₃	$W_3 = g_4 \cdot (h_3 - h_4)$ $G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
	G_4 ρ t_4	-	-	$G_4 \ {V_5}^*$	g ₄ g ₅ *	<i>t</i> ₄	-	-	P ₄	Err ₄	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
	Открытая система (по разнице) ПР в										$v_5 - v_5 \cdot \Delta u_5$
	подающем ТП и обратном ТП G_I	Q_I	W_{I}	G_1 G_2	g ₁	t_1	Δt_{12}	$ au_{PI}$	P_1 P_2	Err ₁ Err ₂	$Q_{1} = G_{1} \cdot (h_{1} - h_{X}) - G_{2} \cdot (h_{2} - h_{X})$ $W_{1} = g_{1} \cdot (h_{1} - h_{X}) - g_{2} \cdot (h_{2} - h_{X})$
15	G_2 G_2 G_2	-	-	-	g ₂	<i>t</i> ₂	- -	-	-	- -	$G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$
		-	-	V_5^*	- g ₅ *	t_{x}	-	-	P_x	-	$g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho (t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продолжение таблицы Б.1

Номер	Наименование и условное обозна-		Индицируемые								Формула вычисления
схемы	чение схемы измерения				па	раме	тры				параметра
16	Открытая система, ПР в подающем ТП и обратном ТП G_1 f_2 f_3 f_4	Q1	W ₁	G_1 G_2 C_3 C_4 C_5	g ₁ g ₂ - - g ₅ *	t ₁ t ₂ t _x	Δt ₁₂	τ _{P1}	P ₁ P ₂	Err ₁ Err ₂	$Q_{l} = G_{l} \cdot (h_{l} - h_{2}) + (G_{1} - G_{2}) \cdot (h_{2} - h_{3})$ $W_{l} = g_{l} \cdot (h_{l} - h_{2}) + (g_{1} - g_{2}) \cdot (h_{2} - h_{3})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
17	Открытая система, ПР в подающем ТП, обратном ТП и ТП ГВС (измерение Q по G_1 и G_3)	Q ₁ - Q ₃ -	W ₁ - W ₃	G_1 G_2 G_3 C_4 V_5^*	g ₁ g ₂ g ₃ -	t_1 t_2 t_3 t_x	Δt ₁₂	$ au_{PI}$ - $ au_{P3}$ -	P_1 P_2 P_3 P_x	Err ₁ Err ₂ Err ₃ -	$Q_{1} = G_{1} \cdot (h_{1} - h_{2})$ $W_{1} = g_{1} \cdot (h_{1} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{2} - h_{X})$ $W_{3} = g_{3} \cdot (h_{2} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
18	Открытая система, ПР в подающем ТП, обратном ТП и ТП ГВС (измерение Q по G_2 и G_3)	Q ₁ - Q ₃ -	W ₁ - W ₃	G_1 G_2 G_3 V_5^*	g ₁ g ₂ g ₃ - g ₅ *	t_1 t_2 t_3 t_x	Δt ₁₂	$ au_{PI}$ - $ au_{P3}$ -	P ₁ P ₂ P ₃ - P _x	Err ₁ Err ₂ Err ₃ -	$Q_{I} = G_{2} \cdot (h_{I} - h_{2})$ $W_{I} = g_{2} \cdot (h_{I} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{I} - h_{X})$ $W_{3} = g_{3} \cdot (h_{I} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продолжение т	габлицы	Б.1
---------------	---------	-----

Номер схемы	Наименование и условное обозначе- ние схемы измерения					ициру іраме	емые тры				Формула вычисления параметра
19	Открытая система, ПР в подающем ТП и ТП ГВС $G_{l} t_{l} G_{3} t_{3} $ ГВС $G_{l} T T T T T T T T T $	Q ₁ - Q ₃	W ₁ - W ₃ -	G_1 - G_3 - V_5^*	81 - 83 - 85*	t_1 t_2 t_3 t_x	Δt ₁₂	τ _{P1} - τ _{P3}	P_1 P_2 P_3 P_x	Err ₁ Err ₂ Err ₃ -	$Q_{1} = G_{1} \cdot (h_{1} - h_{2})$ $W_{1} = g_{1} \cdot (h_{1} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{2} - h_{X})$ $W_{3} = g_{3} \cdot (h_{2} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
20	Открытая система, ПР в обратном ТП и ГВС G_3 G_2 G_2 G_2 G_3 G_3 G_3 G_4 G_5 G_5 G_6 G_7 G_8	Q1 - Q3	W ₁ - W ₃ -	G_2 G_3 V_5^*	- 82 83 - 85*	t_1 t_2 t_3 t_x	Δt ₁₂	τ _{P1} - τ _{P3} -	P ₁ P ₂ P ₃ - P _x	Err ₁ Err ₂ Err ₃ -	$Q_{1} = G_{2} \cdot (h_{1} - h_{2})$ $W_{1} = g_{2} \cdot (h_{1} - h_{2})$ $Q_{3} = G_{3} \cdot (h_{1} - h_{X})$ $W_{3} = g_{3} \cdot (h_{1} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
21	Открытая система (по разнице), ПР в подающем ТП и обратном ТП + закрытая система, ПР в подающем ТП G_1 f_1 G_2 f_3 f_4 f_4	Q1 - Q3 -	W ₁ - W ₃	G_1 G_2 G_3 C_5	81 82 83 - 85*	t_1 t_2 t_3 t_4 t_x	Δt_{12} - Δt_{34} -	$ au_{P1}$ - $ au_{P3}$ -	P_1 P_2 P_3 P_4 P_x	Err ₁ Err ₂ Err ₃ Err ₄	$Q_{1} = G_{1} \cdot (h_{1} - h_{X}) - G_{2} \cdot (h_{2} - h_{X})$ $W_{1} = g_{1} \cdot (h_{1} - h_{X}) - g_{2} \cdot (h_{2} - h_{X})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{4})$ $W_{3} = g_{3} \cdot (h_{3} - h_{4})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продолжение	таблины	Б 1
LINOMOTIMETINE	таолицы	D. I

Номер	Наименование и условное обозначе-				Инд	ициру	Формула вычисления				
схемы	ние схемы измерения				па	раме	тры				параметра
22	Открытая система (по разнице), ПР в подающем ТП и обратном ТП + закрытая система, ПР в обратном ТП G_1 G_2 G_2 G_3 G_4	Q ₁ - Q ₃ -	W ₁ - W ₃ -	G_1 G_2 G_4 V_5^*	81 82 - 84 85*	t_1 t_2 t_3 t_4 t_x	Δt_{12} - Δt_{34} -	Т _{Р1} - т _{Р3}	P_1 P_2 P_3 P_4 P_x	Err ₁ Err ₂ Err ₃ Err ₄	$Q_1 = G_1 \cdot (h_1 - h_X) - G_2 \cdot (h_2 - h_X)$ $W_1 = g_1 \cdot (h_1 - h_X) - g_2 \cdot (h_2 - h_X)$ $Q_3 = G_4 \cdot (h_3 - h_4)$ $W_3 = g_4 \cdot (h_3 - h_4)$ $G_i = N_i \cdot \Delta u_i \cdot \rho(t_i) / 1000$ $g_i = f_i \cdot \Delta u_i \cdot \rho(t_i) \cdot 3,6$ $V_5 = N_5 \cdot \Delta u_5$
23	Открытая система (по разнице), ПР в подающем и обратном ТП + закрытая система, ПР в подающем и обратном ТП G_1 G_2 G_3 G_4	Q ₁ - Q ₃	W ₁ - W ₃	G_1 G_2 G_3 G_4 V_5^*	81 82 83 84 85*	t_1 t_2 t_3 t_4 t_x	Δt_{12} - Δt_{34} -	τ _{P1} - τ _{P3} -	P_1 P_2 P_3 P_4 P_x	Err ₁ Err ₂ Err ₃ Err ₄	$Q_{1} = G_{1} \cdot (h_{1} - h_{X}) - G_{2} \cdot (h_{2} - h_{X})$ $W_{1} = g_{1} \cdot (h_{1} - h_{X}) - g_{2} \cdot (h_{2} - h_{X})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{4})$ $W_{3} = g_{3} \cdot (h_{3} - h_{4})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
24	Открытая система (по разнице), ПР в подающем и обратном ТП + открытая система (по разнице), ПР в подающем и обратном ТП $G_1 = G_2 = f_2$ $G_3 = f_3$ $G_4 = f_4$	Q ₁ - Q ₃ -	W ₁ - W ₃ -	G_1 G_2 G_3 G_4 V_5 *	81 82 83 84 85*	t_1 t_2 t_3 t_4 t_x	Δt_{12} - Δt_{34} -	τ _{P1} - τ _{P3} -	P_1 P_2 P_3 P_4 P_x	Err ₁ Err ₂ Err ₃ Err ₄	$Q_{1} = G_{1} \cdot (h_{1} - h_{X}) - G_{2} \cdot (h_{2} - h_{X})$ $W_{1} = g_{1} \cdot (h_{1} - h_{X}) - g_{2} \cdot (h_{2} - h_{X})$ $Q_{3} = G_{3} \cdot (h_{3} - h_{X}) - G_{4} \cdot (h_{4} - h_{X})$ $W_{3} = g_{3} \cdot (h_{3} - h_{X}) - g_{4} \cdot (h_{4} - h_{X})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

Продолжение	таблицы	ы Б.1
-------------	---------	-------

Номер схемы	Наименование и условное обозначе- ние схемы измерения		Индицируемые параметры							Формула вычисления параметра	
25	Источник тепловой энергии, ПР в подающем, обратном ТП и ТП подпитки $G_3 t_3$ G_2 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_8 G_9 G	<i>Q1</i>	W ₁	G_1 G_2 G_3 V_5	81 82 83 - 85*	t_1 t_2 t_3	Δt_{12} - Δt_{23} -	τ _{P1}	P ₁ P ₂ P ₃	Err ₁ Err ₂ Err ₃	$Q_{1} = G_{1} \cdot (h_{1} - h_{2}) + G_{3} \cdot (h_{2} - h_{3})$ $W_{1} = g_{1} \cdot (h_{1} - h_{2}) + g_{3} \cdot (h_{2} - h_{3})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3.6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
26	Источник тепловой энергии, ПР в подающем ТП и ТП подпитки G_3 t_3 U G_1 t_1 t_2 t_2	<i>Q</i> ₁	W ₁	G_{I} G_{3} F_{5}	81 - 83 - 85*	t_1 t_2 t_3	Δt_{12} - Δt_{23} -	τ _{P1}	P ₁ P ₂ P ₃	Err ₁ Err ₂ Err ₃	$Q_{1} = G_{1} \cdot (h_{1} - h_{2}) + G_{3} \cdot (h_{2} - h_{3})$ $W_{I} = g_{1} \cdot (h_{I} - h_{2}) + g_{3} \cdot (h_{2} - h_{3})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$
27	Источник тепловой энергии, ПР в обратном ТП и ТП подпитки	<i>Q1</i>	W ₁	G_2 G_3 V_5	- 82 83 - 85*	t ₁ t ₂ t ₃	Δt_{12} - Δt_{13} -	τ _{P1}	P ₁ P ₂ P ₃	Err ₁ Err ₂ Err ₃	$Q_{1} = G_{2} \cdot (h_{1} - h_{2}) + G_{3} \cdot (h_{1} - h_{3})$ $W_{1} = g_{2} \cdot (h_{1} - h_{2}) + g_{3} \cdot (h_{1} - h_{3})$ $G_{i} = N_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) / 1000$ $g_{i} = f_{i} \cdot \Delta u_{i} \cdot \rho(t_{i}) \cdot 3,6$ $V_{5} = N_{5} \cdot \Delta u_{5}$

35

Примечания 1 * - если используется дополнительный канал. 2 $g_5 = f_5 \cdot \Delta u_5 \cdot 3600$

ПРИЛОЖЕНИЕ В

(обязательное)

Коды ошибок вычислителя ТМК-Н3

- Err 1 Неработоспособность преобразователя расхода (при включенном тесте линии)*;
 - Err 2 Температура теплоносителя не в допуске, t <3°C или >150°C;
- Err 3 Разность температур теплоносителя между подающим и обратным трубопроводами, Δt_{12} < 0 °C;
- Err 4 Температура теплоносителя в подающем (обратном) трубопроводе меньше температуры холодной воды, t < tx;
 - Err 5 Значение тепловой мощности W< 0;
 - Err 6 резерв (ТМК-H2, ТМК-H3 не используется);
- Err 7 Разность температур теплоносителя между подающим и обратным трубопроводами меньше минимально допустимой, $\Delta t_{12} < 3$ °C;

Системные ошибки:

- Err 8 сброс системы
- Err 9 пониженное напряжение питания;
- Err 0 сброс системы при пропадании питания
- * для преобразователя расхода исполнения МФ-X.21: отсутствие питания преобразователя, к.з. или обрыв линии связи между преобразователем и вычислителем;
- для преобразователей расхода BПС1(2), BПС3, МФ-X.X (кроме преобразователя расхода исполнения МФ-X.21): к.з. или обрыв линии связи между преобразователем и вычислителем.

Примечание — Контроль линии связи осуществляется только с преобразователями расхода ВПС1(2), ВПС3, МФ-Х.2, МФ-Х.21 при включении теста линии (см. таблицу Г.1, Приложение Г).

Нештатные ситуации вычислителя ТМК-Н3

Таблица В.1

Номер	Ноштатиза ситуациа	Не считаются		Ж	(КИ	
схемы	Нештатная ситуация	пе считаются	Канал 1	Канал 2	Канал 3	Канал 4
	К3/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
1	t2< 3, t2> 150	Q1, W1, τp1		2		
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		
	t1< 3, t1> 150	Q1, W1, τp1	2			
	КЗ/обрыв G2	Q1, W1, G2, g2 τp1		1		
2	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
3	КЗ/обрыв G2	G2, g2		1		
3	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		
	КЗ/обрыв G1	G1, g1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
4	КЗ/обрыв G2	Q1, W1, G2, g2 τp1		1		
-	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		

Номер Нештатная ситуация		Не считаются		ЖКИ		
схемы	•		Канал 1	Канал 2	Канал 3	Канал 4
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
5	t2< 3, t2> 150	Q1, W1, τp1		2		
	t3< 3, t3> 150	Q3, W3, G3, g3,			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3, 7	3. 7		
	Δt3x< 0	Q3, W3, τp3			4	
	t1< 3, t1> 150	Q1, W1, τp1	2			
	КЗ/обрыв G2	Q1, W1, G2, g2 τp1		1		
	t2< 3, t2> 150	Q1, W1, G2, g2 τp1		2		
6	К3/обрыв G3	Q3, W3, G3, g3, τp3			1	
0	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		
	t3< tx	Q3, W3, τp3			4	
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	КЗ/обрыв G2	G2, g2		1		
	t2< 3, t2> 150	Q1, W1, G2, g2 τp1		2		
7	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7		
	t3< tx	Q3, W3, τp3			4	
	КЗ/обрыв G1	G1, g1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
8	КЗ/обрыв G2	Q1, W1, G2, g2 τp1		1		
	t2< 3, t2> 150	Q1, W1, G2, g2 τp1		2		
	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
	t3< 3, t3> 150	Q1, W1, G3, g3 τp1			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3; 7	3; 7		
9	t3< tx	Q3, W3, τp3			4	
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	$\Delta t1x < 0$	Q1, W1, τp1	4			
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
1.0	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
10	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	t1< tx	Q1, W1, τp1	4			
	t3< tx	Q3, W3, τp3			4	

37 ped.2

3 Канал 4 2 7
7
7
1 0 7
3, 7
1
1 2
4
7
'
3, 7
0, 1
1
2
7
3, 7
1
2
_
7
'
1

Номер	Нештатная ситуация	Не считаются		Ж		
схемы	, , , , , , , , , , , , , , , , , , ,		Канал 1	Канал 2	Канал 3	Канал 4
15	КЗ/обрыв G1 t1< 3, t1> 150 t1< tx (при t1 <tx<t2) t1< tx (при t1<t2<tx) t1< tx (при t2<t1<tx) KЗ/обрыв G2 t2< 3, t2> 150 t2< tx (при t2<tx<t1) t2< tx (при t2<tx<t1) t2< tx (при t1<t2<tx) 0< \Delta t12< 3 \Delta t12< 0</t2<tx) </tx<t1) </tx<t1) </t1<tx) </t2<tx) </tx<t2) 	Q1, W1, G1, g1, τp1 Q1, W1, G1, g1, τp1 Q1, W1, τp1 Q1, W1, τp1 Q1, W1, τp1 Q1, W1, G2, g2, τp1 Q1, W1, τp1 Q1, W1, τp1 Q1, W1, τp1 Q1, W1, τp1 Q1, W1, τp1	1 2 3, 4, 7 3, 4, 7 4 3, 4, 7 7 3, 7	3, 7 3, 4, 7 4 1 2 4 4 3, 4, 7 7 3, 7		
				3, 1		
16	W1<0 K3/обрыв G1 t1< 3, t1> 150 t1< tx (при t1 <tx<t2) (при="" 3,="" g2="" k3="" t1<="" t2="" t2<="" t2<t1<tx)="" tx="" обрыв=""> 150 t2< tx (при t2<tx<t1) (при="" d2<="" t2<="" t2<t1<<="" t2<t1<tx)="" td="" tx=""><td>Q1, W1 Q1, W1, G1, g1, τρ1 Q1, W1, G1, g1, τρ1 Q1, W1, τρ1 Q1, W1, τρ1 Q1, W1, τρ1 Q1, W1, G2, g2, τρ1 Q1, W1, τρ1</td><td>5 1 2 3, 7 3, 7 7 7 3, 7 5</td><td>3, 7 3, 4, 7 4 1 2 4 4 3, 4, 7 7 3, 7</td><td></td><td></td></tx<t1)></tx<t2)>	Q1, W1 Q1, W1, G1, g1, τρ1 Q1, W1, G1, g1, τρ1 Q1, W1, τρ1 Q1, W1, τρ1 Q1, W1, τρ1 Q1, W1, G2, g2, τρ1 Q1, W1, τρ1	5 1 2 3, 7 3, 7 7 7 3, 7 5	3, 7 3, 4, 7 4 1 2 4 4 3, 4, 7 7 3, 7		
17	К3/обрыв G1 t1<3, t1>150 K3/обрыв G2 t2<3, t2>150 t2< tx K3/обрыв G3 t3<3, t3>150 0< \Delta t12<3 \Delta t12<0	Q1, W1, G1, g1, τp1 Q1, W1, G1, g1, τp1 G2, g2, Q1, W1, Q3, W3, G2, g2, τp1, τp3 Q1, W1, τp1 Q3, W3, G3, g3, τp3 Q3, W3, G3, g3, τp3	1 2 7 3, 7	1 2 4 7 3,7	1 2	
18	К3/обрыв G1 t1<3, t1>150 t1 <tx K3/обрыв G2 t2<3, t2>150 K3/обрыв G3 t3<3, t3>150 0< \Delta t12<3 \Delta t12<0</tx 	G1, g1 Q1, W1, Q3, W3, G1, g1, τp1, τp3 Q1, W1, τp1 Q1, W1, G2, g2, τp1 Q1, W1, G2, g2, τp1 Q3, W3, G3, g3, τp3 Q3, W3, G3, g3, τp3	1 2 4 7 3, 7	1 2 7 3, 7	1 2	

Номер	Нештатная ситуация	Не считаются		Ж	КИ	
схемы	Нештатная ситуация		Канал 1	Канал 2	Канал 3	Канал 4
	КЗ/обрыв G1	Q1, W1, G1, g1, τρ1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	t2< 3, t2> 150	Q1, W1, Q3, W3, τρ1, τρ3		2		
19	t2< tx	Q3, W3, τp3		4		
10	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7		
	t1< 3, t1> 150	Q1, W1, Q3, W3, τρ1, τρ3	2			
	t1< tx	Q3, W3, τp3	4			
	КЗ/обрыв G2	Q1, W1, G2, g2, τp1		1		
20	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
20	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1	
	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	0< Δt12< 3		7	7		
	Δt12< 0	Q1, W1, τρ1	3, 7	3, 7		
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	t1< tx (при t1 <tx<t2)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 7</td><td></td><td></td></tx<t2)<>	Q1, W1, τp1	3, 4, 7	3, 7		
	t1< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		
	t1< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
	КЗ/обрыв G2	Q1, W1, G2, g2, τp1		1		
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
	t2< tx (при t2 <tx<t1)< td=""><td>Q1, W1, τp1</td><td></td><td>4</td><td></td><td></td></tx<t1)<>	Q1, W1, τp1		4		
04	t2< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
21	t2< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		
	К3/обрыв G3	Q3, W3, G3, g3, τp3			1	
	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	
	t4< 3, t4> 150	Q3, W3, τp3				2
	0< Δt12< 3		7	7		
	0< Δt34< 3				7	7
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7		
	Δt34< 0	Q3, W3, τp3			3, 7	3, 7
	W1<0	Q1, W1	5			

Номер	Нештатная ситуация	Не считаются			шибки	
схемы	• •		Канал 1	Канал 2	Канал 3	Канал 4
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1			
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2			
	t1< tx (при t1 <tx<t2)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 7</td><td></td><td></td></tx<t2)<>	Q1, W1, τp1	3, 4, 7	3, 7		
	t1< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		
	t1< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
	КЗ/обрыв G2	Q1, W1, G2, g2, τp1		1		
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
22	t2< tx (при t2 <tx<t1)< td=""><td>Q1, W1, τp1</td><td></td><td>4</td><td></td><td></td></tx<t1)<>	Q1, W1, τp1		4		
	t2< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
	t2< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td>1</td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		1
	t4< 3, t4> 150	Q3, W3, G4, g4, τp3	1_	_		2
	0< Δt12< 3		7	7	_	_
	0< Δt34< 3				7	7
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7		
	Δt34< 0	Q3, W3, τp3	_		3, 7	3, 7
	W1<0	Q1, W1	5 1			
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1				
	t1<3, t1>150	Q1, W1, G1, g1, τp1	2	2 7		
	t1< tx (при t1 <tx<t2)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 7</td><td></td><td></td></tx<t2)<>	Q1, W1, τp1	3, 4, 7	3, 7		
	t1< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		
	t1< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
	К3/обрыв G2	Q1, W1, G2, g2, τp1		1		
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2		
	t2< tx (при t2 <tx<t1)< td=""><td>Q1, W1, τp1</td><td>1</td><td></td><td></td><td></td></tx<t1)<>	Q1, W1, τp1	1			
	t2< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4		
	t2< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7		
	К3/обрыв G3	Q3, W3, G3, g3, τp3			1	
23	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2	4
	КЗ/обрыв G4	G4, g4				1 2
	t4< 3, t4> 150	Q3, W3, G4, g4, τp3	7	7		2
	0< Δt12< 3 0< Δt34< 3		′	/	7	7
		04 10/4 1	2.7	2.7	/	7
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7	2.7	2.7
	∆t34< 0 W1<0	Q3, W3, τp3 Q1, W1	5		3, 7	3, 7
	0< Δt12< 3	Q1, VV I	5 7	7		
	0< Δt12< 3 0< Δt34< 3		'	′	7	7
	0< Δι34< 3 Δt12< 0	01 W1 501	3, 7	3, 7	'	′
	Δt 12< 0 Δt 34< 0	Q1, W1, τp1 Q3, W3, τp3	3, 7	3, 1	3 7	3 7
	Δt34< 0 W1<0	Q3, W3, τρ3 Q1, W1	5		3, 7	3, 7
	VV I < U	Q(I, VV I	່ວ			

Номер	жение таолицы в.т	He chiatologe			Код ошибки		
схемы	Нештатная ситуация	Не считаются	Канал 1	Канал 2	Канал 3	Канал 4	
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1				
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2				
	t1< tx (при t1 <tx<t2)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 7</td><td></td><td></td></tx<t2)<>	Q1, W1, τp1	3, 4, 7	3, 7			
	t1< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7			
	t1< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4			
	КЗ/обрыв G2	Q1, W1, G2, g2, τp1		1			
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2			
	t2< tx (при t2 <tx<t1)< td=""><td>Q1, W1, τp1</td><td></td><td>4</td><td></td><td></td></tx<t1)<>	Q1, W1, τp1		4			
	t2< tx (при t2 <t1<tx)< td=""><td>Q1, W1, τp1</td><td>4</td><td>4</td><td></td><td></td></t1<tx)<>	Q1, W1, τp1	4	4			
	t2< tx (при t1 <t2<tx)< td=""><td>Q1, W1, τp1</td><td>3, 4, 7</td><td>3, 4, 7</td><td></td><td></td></t2<tx)<>	Q1, W1, τp1	3, 4, 7	3, 4, 7			
24	КЗ/обрыв G3	Q3, W3, G3, g3, τp3			1		
27	t3< 3, t3> 150	Q3, W3, G3, g3, τp3			2		
	t3< tx	Q3, W3, τp3			4		
	КЗ/обрыв G4	Q3, W3, G4, g4, τp3				1	
	t4< 3, t4> 150	Q3, W3, G4, g4, τp3				2	
	t4< tx	Q3, W3, τp3				4	
	0< Δt12< 3		7	7			
	0< Δt34< 3				7	7	
	Δt12< 0	Q1, W1, τp1	3, 7	3, 7			
	Δt34< 0	Q3, W3, τp3			3, 7	3, 7	
	W1<0	Q1, W1	5				
	W3<0	Q3, W3			5		
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1				
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2				
	КЗ/обрыв G2	G2, g2		1			
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2			
25	КЗ/обрыв G3	Q1, W1, G3, g3, τp1			1		
23	t3< 3, t3> 150	Q1, W1, G3, g3, τp1			2		
	0< Δt12< 3		7	*			
	0< Δt23< 3			*	7		
	Δt12< 0	Q1, W1, τp1	3, 7	*			
	Δt23< 0	Q1, W1, τp1		*	3, 7		
	КЗ/обрыв G1	Q1, W1, G1, g1, τp1	1				
	t1< 3, t1> 150	Q1, W1, G1, g1, τp1	2				
	t2< 3, t2> 150	Q1, W1, τp1		2			
	КЗ/обрыв G3	Q1, W1, G3, g3, τp1			1		
26	t3< 3, t3> 150	Q1, W1, G3, g3, τp1			2		
	0< Δt12< 3		7	*			
	0< Δt23< 3			*	7		
	∆t12< 0	Q1, W1, τp1	3, 7	*			
	Δt23< 0	Q1, W1, τp1		*	3, 7		

Номер	Ноштотноя онтуония	Нештатная ситуация Не считаются		Код ошибки				
схемы	Нештатная ситуация	пе считаются	Канал 1	Канал 2	Канал 3	Канал 4		
	t1< 3, t1> 150	Q1, W1, τp1	2					
	КЗ/обрыв G2	Q1, W1, G2, g2, τp1		1				
	t2< 3, t2> 150	Q1, W1, G2, g2, τp1		2				
	КЗ/обрыв G3	Q1, W1, G3, g3, τp1			1			
27	t3< 3, t3> 150	Q1, W1, G3, g3, τp1			2			
	0< Δt12< 3		*	7				
	0< Δt13< 3		*		7			
	Δt12< 0	Q1, W1, τp1	*	3, 7				
	Δt13< 0	Q1, W1, τp1	*		3, 7			

^{*}Примечание – 3, 7 – коды ошибок, возможных в данной нештатной ситуации.

43 peð.2

ПРИЛОЖЕНИЕ Г

(обязательное)

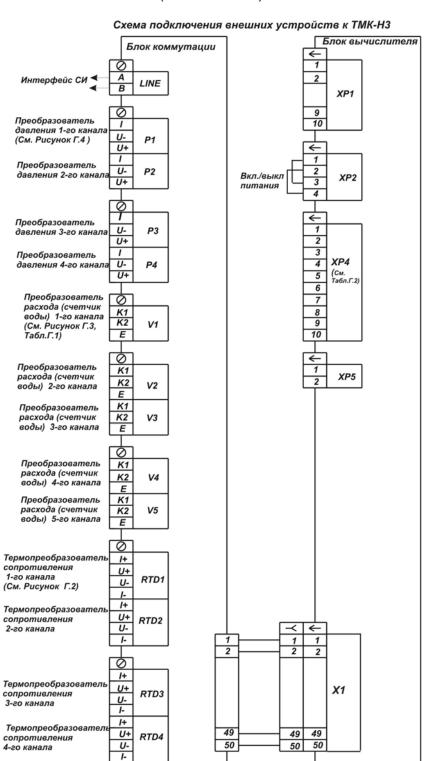


Рисунок Г.1

44 ped.2

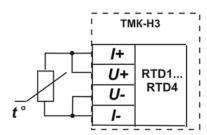


Рисунок Г.2 - Схема подключения термопреобразователей к ТМК-Н3

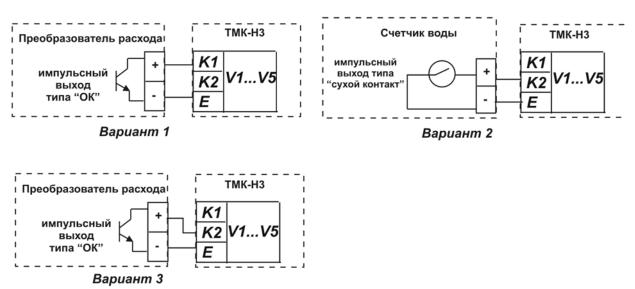


Рисунок Г.3 - Схемы подключения преобразователей расхода и счетчиков воды к ТМК-Н3

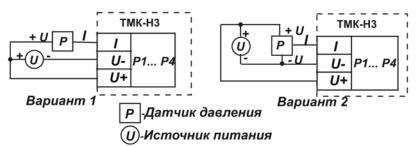


Рисунок Г.4 - Схемы подключения преобразователей давления к ТМК-Н3

45 pe∂.2

Таблица Г. 1 - Варианты подключения различных преобразователей расхода к ТМК-Н3

K IMK-H3									
Тип прибора		Ду50100 импульса, м³/	Ду125200 имп.	Вариант Рисунок Г.3	Наличие джампера на ХР4 (Табл.Г.2)	Возможность теста линии			
впсз	0,01 0,001	0,1 0,01	1 0,1	3 1	— Есть	Нет Есть			
ВПС1(2)	0,01 0,005 0,001	0,1 0,05 0,01	1 0,5 0,1	3 1 1	— Есть Есть	Нет Нет Есть			
МастерФлоу	0,01 0,005 0,001	0,1 0,05 0,01	1 0,5 0,1	1	Есть	Есть			
Счетчик воды	0,01 0,005 0,001	0,1 0,05 0,01	1 0,5 0,1	2	_	Hem			
ПРЭМ-2	0,01 0,005 0,001	0,1 0,05 0,01	1 0,1	3 3 1	— — Hem	Hem Hem Hem			
МЕТРАН -300ПР	0,01 0,001	0,1 0,01	1 0,1	3 1	— Hem	Hem Hem			
ЭРСВ "ВЗЛЕТ ЭР"									
УРСВ "ВЗЛЕТ МР"			раметры						
УРСВ -010М	COOL	тветств	ии с табл	ицами	11.31.5.				
AC-001									

Таблица Г.2 - Номера контактов на XP4

Канал	Nº
V1	1-2
V2	3-4
V3	5-6
V4	7-8
V5	9-10

Примечания

Таблица Г.3 - Выходные параметры источника сигнала, подключаемого к клеммам К1 тепловычислителя (наличие джампера на XP4)

Напряжение низкого уровня, не более, В	Сопротив- ление за- крытого ключа, не менее, мОм	Сопротивление открытого клю- ча, не более, кОм	Тип выходного сигнала	Частота выходного сигнала, Гц	Скважность * выходного сигнала, не менее	Длительность актив-ного низкого уровня напряжения, не ме-
						нее, мс
0,5	0,5	2	«открытый коллектор»; активный уровень напряжения - низкий	0,00518	20	1,5

Примечания

3 *Скважность сигнала – отношение периода сигнала к длительности $\frac{T}{ au}$

¹ В преобразователях расхода МастерФлоу с Ду 40мм при работе в тепловычислителем необходимо ограничивать расход до значений, указанных в табл. Г6 и Г7.

² При подключении преобразователя расхода к клеммам К1 тепловычислителя при наличии джампера на XP4 длина подключаемой линии связи - не более 100м.

При подключении преобразователя расхода к клеммам К1 тепловычислителя при отсутствии джампера на XP4 длина подключаемой линии связи - не более 20м.

При подключении преобразователя расхода к клеммам К2 тепловычислителя длина подключаемой линии связи - не более 100 м.

¹ Длина подключаемой линии связи – не более 100м;

² Возможность включения теста линии, при этом взаимная емкость между входными клеммами К1, обусловленная подключенными линиями — не более 2000 пФ;

Таблица Г.4 – Выходные параметры источника сигнала, подключаемого к клеммам К1 тепловычислителя (отсутствие джампера на XP4)

Напряже-	Сопротивле-	Сопротивление	Тип выходного	Частота вы-	Скважность	Длитель-
ние низ- кого уровня, не более, В	ние закрыто- го ключа, не менее, мОм	открытого ключа, не более, кОм	сигнала	ходного сиг- нала, Гц	выходного сигнала, не менее	ность активного низкого уровня напряжения, не менее, мс
0,5	10	15	«открытый коллектор»; активный уро- вень напряжения - низкий	0,00518	2	1,5

Таблица Г.5 — Выходные параметры источника сигнала, подключаемого к клеммам К2 тепловычислителя

Напряжение низкого уровня, не более, В	Сопротивление закрытого ключа, не менее, мОм	Сопротивление открытого ключа, не более, кОм	Тип выходного сигнала	Частота вы- ходного сиг- нала, Гц	Скважность выходного сигнала, не менее	Длительность активного низкого уровня напряжения, не менее, мс
0,5	20	15	«открытый коллектор»; активный уровень напряжения - низкий	0,00054,5	2	50

Таблица Г.6 — Максимальные значения расходов для определения параметров теплоносителя в закрытых системах теплопотребления и в системах ГВС (W= $g_i \cdot \Delta h$)

Dv 45 40	Dv. 50 400	Dv. 40E 200
Ду 1540	Ду 50100	Ду 125200
g _i max, м ³ /ч		
50	500	5000
Примечание – Цены импульсов приведены в таблице Г.1		

47 peð.2

Таблица Г.7 - Максимальные значения расходов для определения параметров теплоносителя в открытых системах теплопотребления и в схемах измерения для источника тепловой энергии (W= $g_i \cdot \Delta h$ - $g_j \cdot \Delta h$; W= $g_i \cdot \Delta h$ + $g_j \cdot \Delta h$)

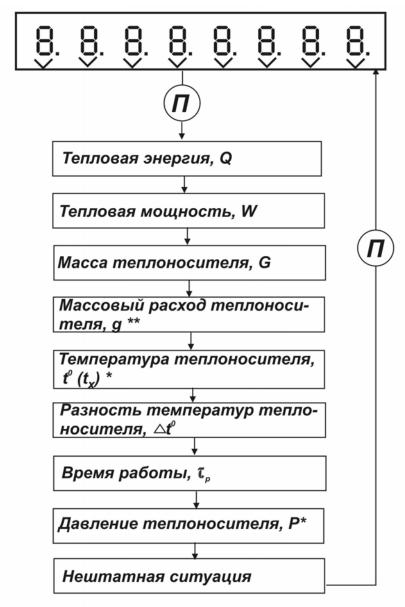
1	Ду 1540	Ду 1540
	gi max = 50 м³/ч	gj max = 50 м³/ч
2	Ду 1540	Ду 50100
	gi max = 50 м³/ч	gj max = 500 м³/ч
3	Ду 50100	Ду 50100
3	gi max = 500 м ³ /ч	gj max = 500 м³/ч
4	Ду 50100	Ду 125200
4	gi max = 500 м ³ /ч	gj max =5000м³/ч
5*	Ду 1540	Ду 125200
	gi max = 50 м ³ /ч	gj max =1100м³/ч

^{*} Используется только при измерении тепловой энергии в Гкал

Примечания

48 peð.2

¹ Цены импульсов приведены в таблице Г.1;


² Индексы I и ј взаимозаменяемы

ПРИЛОЖЕНИЕ Д

(обязательное)

Структурные схемы МЕНЮ вычислителя ТМК-Н3

Вход в режим ОСНОВНОГО МЕНЮ, выход из режима - кнопка "Параметры" П-короткое нажатие;

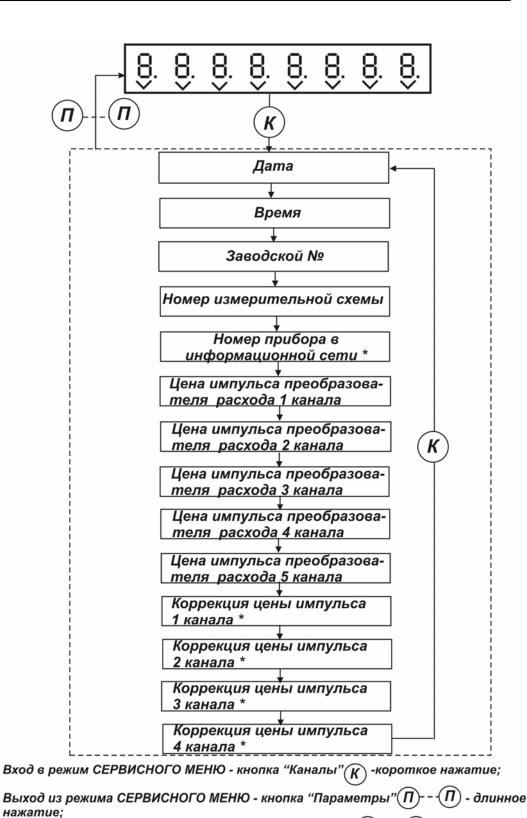
Переключение каналов - кнопка "Каналы" (К) -короткое нажатие;

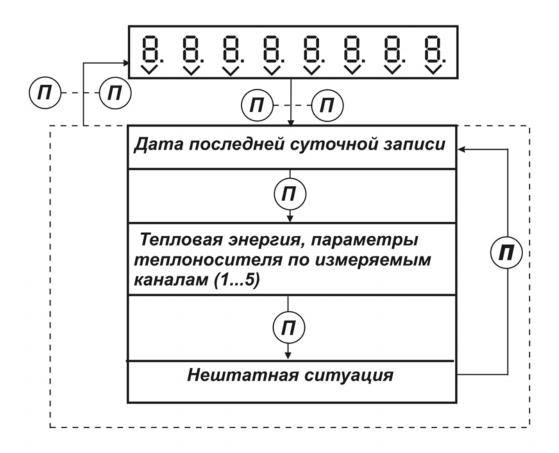
Рисунок Д.1 – Структурная схема ОСНОВНОГО МЕНЮ

49 peд.2

^{* -} вход в режим программирования (t_x ,P) - кнопка "Каналы" (K)---(K)-длинное нажатие;

^{** -} включение (выключение) режима усреднения (для min цены импульса по каждой группе Ду) - кнопка "Каналы" К - - - К -длинное нажатие

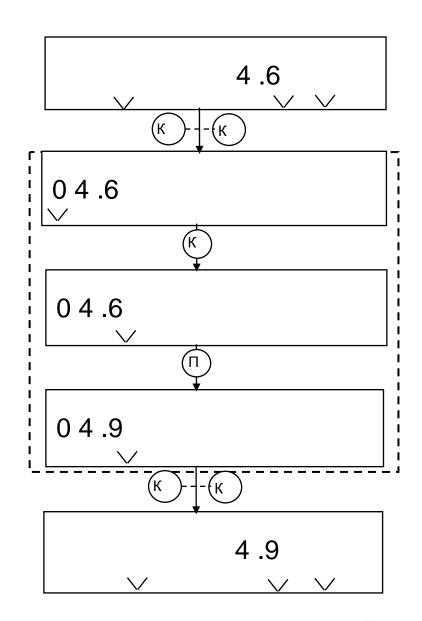



Рисунок Д.2 – Структурная схема СЕРВИСНОГО МЕНЮ

 st - вход в режим программирования - кнопка "Каналы" (K)

нажатие

50 peд.2


Вход в режим МЕНЮ АРХИВ, выход из режима - кнопка "Параметры" — - - П - длинное нажатие;

Просмотр параметров по датам архива - кнопка (K) - короткое нажатие;

Смена направления движения по датам архива - кнопка "Каналы" **К** - - - **К** - длинное нажатие

Рисунок Д.3 – Структурная схема МЕНЮ АРХИВ

Вход в режим программирования – кнопка «Каналы» — длинное нажатие;
Определение места изменяемого разряда – кнопка «Каналы» — короткое нажатие;
Установка требуемого значения – кнопка «Параметры» — короткое нажатие;
Выход из режима программирования – кнопка «Каналы» — К

Рисунок Д.4 - Пример последовательности действий для программирования величины Рх с клавиатуры вычислителя

52 pe∂.2

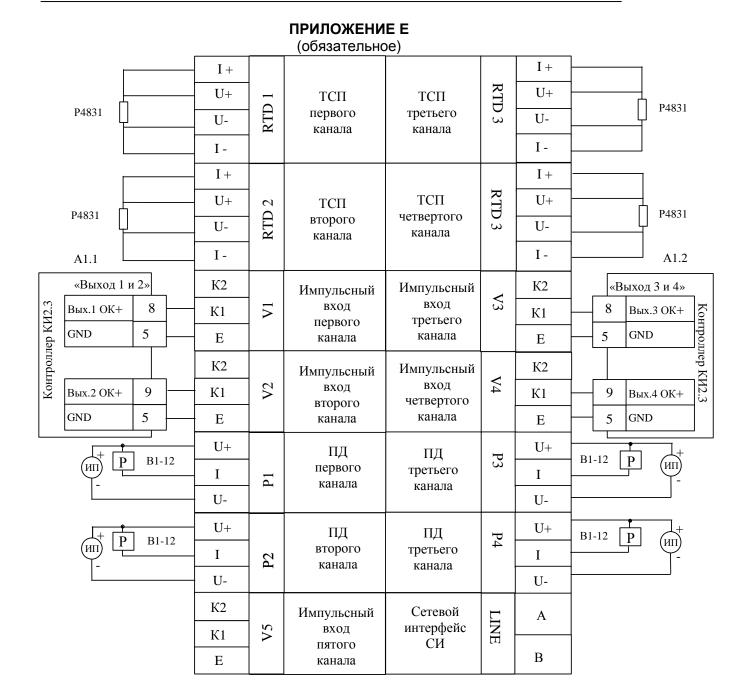


Схема подключения вычислителя ТМК-НЗ к приборам и оборудованию при его поверке (Р - калибраторы тока, ТСП- термометр сопротивлений, ПД – преобразователь давления, ИП – источник питания стабилизированным напряжением U₌24B I_{макс}= 50мA)

Измерительный контроллер КИ-2 поставляется предприятием-изготовителем тепловычислителя по отдельному заказу.

приложение ж

(обязательное)

Протокол поверки вычислителя ТМК – Н3	зав.№
Результаты поверки тепловычислителя:	
Внешний вид	

Наименование метрологических характеристик	Обозначение	Фактическое значение	Допустимые пределы
Пределы относительной погрешности			продения.
измерений тепловой энергии:	$\delta_{\!o}$		
при 10 °C >∆t≥3°C	Q		<u>+</u> 3%
при 147 °C ≥∆t≥10°C			<u>+</u> 1%
Пределы относительной погрешности	$\delta_{\!\scriptscriptstyle G}$		
измерений массы теплоносителя:	G		±0,3%
Пределы относительной погрешности	δ_{G^0}		
измерений объема теплоносителя:	o o		±0,1%
Пределы приведенной погрешности	γ_P		
измерений давления:	, 1		±0,3%
Пределы абсолютной погрешности из-	Δt		
мерений температуры:			<u>+</u> 0,25°C
Пределы абсолютной погрешности из-	Δ_{At}		
мерений разности температур:	20		<u>+</u> 0,1°C
Пределы относительной погрешности	Δτ		
измерений времени:			±0,001%

Подпись	Дата
---------	------

ПРИЛОЖЕНИЕ И

(обязательное)

Карта заказа вычислителя ТМК-Н3_____

Схема измерений №	Размерность счета тепловой энергии Гдж (Гкал)	
Цена входного импульса:		
для 1 канала	для 2 канала	
для 3 канала	для 4 канала	
для 5 канала		
Тип НСХ термопреобразователе	й 100П, 500П, Pt100, Pt500	
Договорные значения давления:	(по умолчанию принимается 5 кгс/см²)	
Для 1 канала	для 2 канала	
Для 3 канала	для 4 канала	
Диапазон входного тока при измерении давления: 05; 420 (мА)		
Договорные давления и температуры в источнике холодной воды (при необходимости): (по умолчанию принимается 5 кгс/см² и 5 °C)		
давление	кгс/см² , температура°С	
Дополнительные требования		
Заказчик:	вание предприятия, тел/факс)	
Лата заказа:	Полпись	

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 **Архангельск** (8182)63-90-72 **Астрахань** (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 **Иркутск** (395)279-98-46

Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курган (3522)50-90-47 Курск (4712)77-13-04 Липецк (4742)52-20-81 **Магнитогорск** (3519)55-03-13 **Москва** (495)268-04-70 **Мурманск** (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Ноябрьск(3496)41-32-12

Омск (3812)21-46-40 **Орел** (4862)44-53-42 **Оренбург** (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саранск (8342)22-96-24 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17 **Тамбов** (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 **Улан-Удэ** (3012)59-97-51 Ульяновск (8422)24-23-59 **Уфа** (347)229-48-12 Хабаровск (4212)92-98-04 **Чебоксары** (8352)28-53-07 **Челябинск** (351)202-03-61 Череповец (8202)49-02-64 **Чита** (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70 Казахстан +7(7172)727-132 Киргизия +996(312)96-26-47

https://prmpribor.nt-rt.ru'|| ppk@nt-rt.ru